
1

Let’s Modularize the Data Model Specifications of the
ObjectLens in VisualWorks/Smalltalk

Michael Prasse

Abstract

The ObjectLens framework of VisualWorks maps objects to tables. This mapping is described in a

data mapping model, which itself is specified in one dataModelSpec method. This method is mono-

lithic and defines the whole data model of an application. This is a suitable approach to start with.

However, when the business area extends to a set of similar applications, like a software product

family, each of these applications needs its own data model specification. All specifications of the

product family would be quite similar but there is no appropriate reuse-mechanism, which could be

used. Consequently, the monolithic design specifications lead to a high degree of redundancy, which

complicates software development and maintenance.

Therefore, this paper describes an approach, which leads to a separation of the monolithic data

model specifications. The main idea is to define the mappings of each class in the class itself using

inheritance and generate the whole specification from a list of single class data models. In this way,

declarative and generative programming techniques are combined.

Keywords

ObjectLens, Smalltalk, VisualWorks, Design Pattern, Software Product Families, OR-Mapping,

Generative Programming

2

Contents

Abstract ..1

Keywords ...1

Contents ...2

Introduction ...3

ObjectLens Framework ..3

Architecture ...4

Conceptual Mapping from Classes to Tables ..5

Programming Metaphor ...6

Summary ..7

Data Model Specification ...7

Conceptualization ..8

Maintenance Problems ..9

Class Hierarchy Problems ...9

Multiple datamodelSpec Problems ...10

The DataModelMerger as a first Solution Approach ..11

Summary ..11

Modularization of the ObjectLens ..12

General Ideas and Goals ..12

Data Model Mappings of Classes ..12

LensApplication datamodelSpec ...14

Integration into the Lens Modeling Tools ...15

DataModelDefinitionGenerator - Generation and Migration ..16

Summary ..18

Conclusion ...19

Literature ...19

3

Introduction

Since 1997 our software engineering group develops applications in the domain of pension schemes

with VisualWorks/Smalltalk. At the beginning this software was specified for one customer. In the

course of time the number of customers and the application domains grew. Today we support more

than 20 customers and all kinds of pension schemes in Germany including long-term accounts of

employees. The system architecture is extended from a fat client architecture to an application service

provider architecture including a web application server, which is also build in VisualWorks.

To reduce software engineering costs we organized our applications as a product family. There is a

single source base for all applications improving reuse of existing modules. The core is organized as a

framework including common GUI-standards, common domain specific models, database access lay-

ers and standard management and administration modules. The applications extent this core by defin-

ing new specific modules using object-oriented techniques like inheritance, object composition and

meta programming.

But there is one area where we could not achieve a high degree of reuse directly. This is how object-

relational mappings are defined in the ObjectLens framework, which is the heart of the data base

access layer. In the ObjectLens, the object-relational mappings are described in one monolithic specifi-

cation. We need a specific object-relational mapping for each application. All this specifications have

common parts. Defining a new specification starts with copying a suitable specification and changing

it. This copy-paste approach leads to a high level of redundancy and makes data model changes of

common parts more difficult because many specifications have to be updated. In this paper we want to

describe a more sophistical solution solving these problems.

The presented solution is a pragmatic one. The first aim was to solve the redundancy and mainte-

nance problem concerning the data model specifications. It was not our goal to do an extensive aca-

demic research on object-relational mapping or to develop a new object-relational mapping frame-

work. For example, there is no opportunity to exchange the base object relational mapping of our appli-

cations. The costs and time are in no relation to the expected benefits. For these reasons our solution

has to be integrated in the existing ObjectLens. Of course to achieve our primary aim of improving the

data model specifications we used an engineering approach including analysis, design, risk manage-

ment, testing and stepwise deployment in production.

The article is structured as following. First the ObjectLens framework of VisualWorks is introduced.

Then the data model specifications of the ObjectLens and their disadvantages for our product line

approach are discussed in detail. Afterwards we present our solution and its integration in the

ObjectLens framework. In the next section we describe the generation of our new data model specifi-

cation parts form the old specifications and how we solve specification conflicts. The conclusion sum-

marizes our experiences.

ObjectLens Framework

The ObjectLens Framework is an integrated part of VisualWorks since Version 2.0 from 1994 ([Parc

1994], [Cinc 2003a]). The major concepts of the ObjectLens have not changed since then. It is an early

developed access framework for mapping objects to relational database tables. It is comparable to

other early OR-mapping tools from this time like TOPLink by The Object People Inc., now Oracle,

Polar by IBL Ingenieurbüro Letters GmbH, Arcus Relational Database Access Layers by sd&m,

MicroDoc Persistence Framework by MicoDoc GmbH or Crossing Chasms Pattern Language by Kyle

Brown ([BrWh 1996], [IBL 1998], [KeCo 1996], [Micr 1998], [TheO 1998])1.

1. We enumerate only approaches which were introduced at the same time like the ObjectLens. Therefore, GLORP

(Smalltalk), JDO (Java) or Hibernate (Java, .NET) are not considered ([BaKi 2004], [Knig 2004], [Roos 2003]).

4

In the next subsections, we describe the architecture, the object mapping to tables and the program-

ming metaphor of the ObjectLens.

Architecture

The ObjectLens Framework consists of four modules, which are described abstractly in figure 1.

The declaration module defines the specifications to describe the data model in a logical way. This

module contains classes for describing the data model and the data model specification. The data

model is a set of objects and defines data structure types, variables, types, and foreign key relation-

ships. The data model specifications are a declarative way to define this data model. Furthermore, it

uses the database module, which describes database tables and columns, to specify the mapping to the

logical database design. Together, both modules describe the logical database design and mapping.

There are also tools like the data modeler and the mapping tool, which allow to specify the data model

specifications tool based. Furthermore, you can generate or adapt the logical database structure from a

data model specification automatically. This process is called "check with database".

The next module is the runtime engine. It defines the infrastructure, which is required for mapping

objects to table rows and vice versa at runtime. It contains classes for row containers, caching, proxies,

and SQL queries. Furthermore, it defines a lens session, which controls the access to the persistent

objects. This module supports a seamless integration of SQL queries into Smalltalk and reduces the

impedance mismatch ([CoMa 1984]).

The last module defines GUI widgets for viewing and editing persistent objects. These widgets are

integrated seamlessly into the GUI framework of VisualWorks. Transient and persistent objects can

therefore be represented in the same way. It defines also aspect paths, which allow connections

between the object aspects and the visual components via the ValueModel-pattern ([ABW 1998], [Cinc

2003b], [Howa 1995], [Wool 1994]).

The ObjectLens itself is based on the EXDI framework (external database interface), which pro-

vides a low level access to database programming. The EXDI provides a set of abstract protocols to

establish a connection to the database server, to prepare and execute SQL queries, to obtain the results,

and to disconnect from the server. It supports also flat or non-nested database transactions with begin,

commit, and rollback.

Figure 1: Technical Architecture

GUI

EXDI

Runtime

DatabaseDeklaration

LensSession

LensContainers

LensProxy

LensDatabaseTableLensDatamodel
LensStructureType

LensStructureVariable

LensGlobalDescriptor

LensApplicationModel

1

LensDatabaseTableColumn

LensSQLTransporter

ExternalDatabaseSessionExternalDatabaseConnection

LensObjectRegistry

connection

EmbeddedDetailSpe

LinkedDetailSpecLensAspectPath

5

The EXDI is an abstract framework. It provides the general implementation, but it does not provide

direct support for any particular database. Database Connect extensions are available to provide con-

nectivity to specific databases. Our software engineering group uses database connections for Oracle,

DB2, and PostgreSQL. The original ObjectLens framework was build for Oracle and later Sybase.

Today we use extensions, which allow to support DB2 and PostgreSQL. Therefore, we can run our

applications with different RDBMS without changing any code. The data models of DB2 and Postgr-

eSQL are automatically generated from the data model specification of Oracle. The current database is

selected by a configuration file.

Conceptual Mapping from Classes to Tables

The conceptual mapping from classes to tables of the ObjectLens is described in table 1. The

ObjectLens uses a simple mapping, which directly maps object-oriented concepts to relational con-

cepts. Classes, instance variables, and monomorphic object references are mapped directly to tables

and columns. 1:N and N:M relationships can be modeled by auxiliary classes, which express the rela-

tionships or by explicit queries, which select all objects that are connected to the object.

Mapping
Support

Concept Mapping

calculus level

(static semantics)a

a. For an introduction to relational databases and the relational calculus see [Date 1995] or [ElNa

1989]. For an introduction to object calculi and object-oriented concepts see [AbCa 1996], [Meye

1997] or [Prass 2002].

Φ: object calculus → relational calculus

directly class level Φclasses: classes → tables

Each class is unambiguously mapped to one table. In one data
model, no table can be mapped to different classes. This restric-
tion holds because the classID of objects is not stored in the ta-
bles. Therefore, you cannot map inheritance or polymorphism
by storing objects of different classes (subclasses) in the same
table.

directly instance variable level Φinstance variables: variables → columns

instance variables with
simple data types

Instance variables with simple data types can be mapped direct-
ly to one column.

instance variables with
monomorphic object ref-
erences (1:1 relationship)

Instance variables that hold object references map to a set of
columns, which holds the primary key of this object. This set of
columns realizes a foreign key relationship.

indirectly 1:n and n:m relationships There is no direct representation. Additional tables in the data-
base and select-statements of the ObjectLens can implement

these relationships.b

b. ObjectLens select-statements are Smalltalk statements, which are automatically transformed in SQL

queries by the ObjectLens.

no support inheritance There is no direct representation. Each subclass is mapped to its
own table. Each table contains all instance variables of the class
including inherited variables.

no support polymorphism Polymorphism for object references is not supported by the Ob-
jectLens. We developed an extension, which allows to support
untyped object references. For such references, the foreign key
consists of the pair (classID, objectID).

Table 1: Object Relational Mapping of the ObjectLens

6

Unfortunately, the ObjectLens has only restricted support for inheritance and polymorphism. Each

class is always unambiguously mapped to one table. You cannot map several classes to one table.

Therefore, you cannot map a class hierarchy to one table. That means that you need several queries if

you want to select objects of different subclasses. Alternatively, you can replace inheritance by object

composition but this can lead to a complicated class design.

For example, you could use a class A for the queries, which has no subclasses. If class A is used for

queries, then only one query is needed to access all objects. The class A has a reference to the root class

B of a class hierarchy. This reference is mapped by an untyped object reference so that objects of A can

point to objects of subclasses of B. The cost of this design is the separation of one domain entity in two

subparts.

Foreign key relationships can only be mapped for monomorphic instance variables. That means

such a variable can only hold objects from one class. If you want to use polymorphic variables, which

can reference to objects from different classes, you have to build untyped relationships. However, in

this case you have to manage the access itself.

Programming Metaphor

The ObjectLens uses explicit persistency. The metaphor of persistency of the ObjectLens is the per-

sistent container or collection. It uses no persistency by reachability, where all objects, which are

reachable from a persistent root object are persistent, or persistent classes, where all objects of the class

are automatically persistent.

The ObjectLens is interpreted as a collection. To make an object persistent, it is simply added to the

lens session. To remove an object from the database, it is simple removed from the lens session. The

syntax is comparable to theirs of collections:

• to make an object persistent: aLensSession add: anObject

• to remove an object from the database: aLensSession remove: anObject

For all objects, which are included in the lens session, changes are automatically detected. Each

state change of such an object leads to an isDirty-registration. This isDirty-mechanism is integrated in

the setter methods of all instance variables by using the private method update:to: of the ObjectLens.

Each state change using a setter method is therefore detected. To reduce coding errors, the getter and

setter methods for instance variables can be automatically generated.

The ObjectLens supports flat transactions. Therefore, all updates, which occur in a transaction, are

written either together in the database (commit) or are rejected (rollback). Furthermore, you can use the

ObjectLens without transactions. In this case changes are immediately written into the database.

Database queries can also be written in Smalltalk. The syntax is comparable to the method select of

collections. The base for queries is the class LensQuery. Where-clauses are expressed as block closures

like in the collection methods do:, select: or detect:. Figure 2 shows an example of a select-statement

from our domain.

The result list of a query is automatically transformed into corresponding objects. Object references

are expressed as lens proxies. If a proxy is accessed it is automatically resolved by the corresponding

object. An object cache ensures referential integrity. All this mechanisms help to abstract from the rela-

Figure 2: Select-statement in Smalltalk

readEmployees: anEmployer in: anApplication
^anApplication

selectOnContainer: self container
whereBlock: [:each | each employer = anEmployer & each isCurrent]

7

tional persistent mechanism and the database access in the ObjectLens. In most cases, Smalltalk syntax

can be used for persistent objects, which reduces the impedance mismatch.

The ObjectLens supports multiple lens sessions. An application can use several lens sessions to

access different databases simultaneously. However, the ObjectLens has no multi-process ability. It is

impossible to access one lens session from different threads or processes. The implementation of the

ObjectLens uses singletons for building the SQL-requests and is therefore not thread safe.

One further disadvantage is the bad performance by mass queries, if object references are resolved

by single queries. This is a typical trade-off of object references and object navigation. Object naviga-

tion is fast, but a query over a set of such objects needs additional queries for each object in the set.

You can influence this by using explicit select statements for mass queries.

Summary

The ObjectLens together with the EXDI framework and the specific Database Connect extensions

provides support for the most relevant aspects of building database applications. This includes the dec-

laration of the mappings, the creation and adaptation of the database tables, the low level database

access, the creation of user interfaces for persistent objects and the runtime support with storing objects

into the database, retrieving objects from the database and querying the database, which Smalltalk que-

ries, which are translated into SQL.

The ObjectLens provides also a simple mapping from object-oriented concepts to relational con-

cepts. Inheritance and polymorphism are not directly supported. Nevertheless, there are ways to

achieve both.

In the most cases you can think about the ObjectLens as a persistent collection. To make an object

persistent, you add it. To remove an object from the database, you remove it from the Lens. To select

an object from the database, you send a select statement to the Lens. The technical aspects like transac-

tions, proxies, posting updates, and translating queries into SQL are done by the ObjectLens.

Summarizing, the ObjectLens is an object-oriented access layer to relational databases. Its advan-

tages are:

• a seamless integration in VisualWorks

• good support access by navigation and single queries

• the generation of the database scheme

• RDBMS-abstraction (Oracle, Sybase, DB2, ODBC, (PostgreSQL))

• GUI-support

• the support of multiple lens sessions

• graphical modeling tools for describing and generating data models

Its disadvantages are:

• only rudimentary support of inheritance and polymorphism

• bad performance by mass queries

• no multiprocessor ability

Data Model Specification

After introducing the ObjectLens let us look now at the data model specifications, which describe

the mapping for one application. In the next subsections, we describe the structure of the dataModel-

Spec, the problems of maintenance and first solutions.

8

Conceptualization

The datamodelSpec is a declarative description of a lens data model. It is coded as a literal array

(LiteralArray). A literal array is an array of arrays of literals. It is recursively defined. Literal arrays are

widely used in VisualWorks. Its most prominent use in VisualWorks is the windowSpec of the GUI-

Framework. All windows, which use the VisualWorks framework, are declarative described by literal

arrays. Another example is the specification of diagrams by the Advance UML modeling tool of Visu-

alWorks, which uses ad2diagram methods ([Cinc 2003b], [Howa 1995]).

To encode a lens data model, you use the method literalArrayEncoding. To decode a lens data

model, you use the method fromLiteralArrayEncoding:.

• encoding: aLensDataModel literalArrayEncoding returns a literal array suitable for re-
constituting the receiver.

• decoding: LensDataModel fromLiteralArrayEncoding: anArray creates a lens data mod-
el from the array encoding.

• LensDataModel fromLiteralArrayEncoding: (aLensDataModel literalArrayEncoding)
returns a lens data model, which is equal to aLensDataModel.

If you apply the methods literalArrayEncoding and fromLiteralArrayEncoding: alternately then you

can switch between the data model level and the data model specification level. This means, that you

can choose the language level for the specification of the data model specifications.

Figure 3 shows the general structure of a literal array and of a dataModelSpec method. A literal

array consists of two central parts: a class and a set of (aspect, value) pairs. The class determines the

kind of object, which the literal array describes. The (aspect, value) pairs describe the state of the

object. Usually the aspect is a method selector and the value is the argument. The receiver of the object

is the recently constructed object. In general, the construction process uses therefore a set of method

sends of the form ’<object> <aspect> <value>’. The value itself can be encoded as a literal array lead-

ing to nested encodings.

The general structure of a lens literal array is also described by figure 31. The first aspect defines the

database context. The second aspect describes the containing structure types. This is the most impor-

Figure 3: Structure of Literal Array and Lens Literal Arrays

literal array
^#(<Class>

<aspect> <value> <aspect> <value> <aspect> <value> ...)

lens literal array
^#(#{Lens.LensDataModel}

#setDatabaseContext: #(...)
#structureTypes: #(

#(#{Lens.LensStructureType}
#memberClass: <memberClass>
#setVariables: #(

#(#{Lens.LensStructureVariable}
#name: 'angelegtAm'
#column: <Database Column>
#privateIsMapped: true)

...)
#table: <Database Table>)

...)
#lensPolicyName: #Mixed
#lensTransactionPolicyName: #PessimisticRR
#validity: #installed)

9

tant aspect of the description because a lens data model is mostly a set of structure types. The next two

aspects describe policies. The validity aspect determines the definition state of the data model.

The literal array of a lens structure type determines the class of the structure type, the variables of

the structure type and the table. The literal array of a lens structure variable determines name, mapping,

and column of the variable. The <value> for the aspect #strutureTypes: is a collection of structure types

and the <value> of the aspect #setVariables: is a collection of structure variables.

Figure 4 shows the beginning of an existing dataModelSpec method, which is part of our system. As

shown in figure 3 the structure types are described as literal arrays. The definition database is an

Oracle7Context with user name ’lens’ and database ’lensDB’. The example shows the beginning of the

specification of the lens structure type COLAdresse. A lens structure type itself consists of a set of lens

structure variables. In the example, the definition for the variable ’dependents’ is shown. This is an

unmapped (transient) variable. The datamodelSpec can specify persistent variables, which are mapped,

and transient variables, which are unmapped. Each lens structure type, which is used as a type of a lens

structure variable, has to be defined in the dataModelSpec. This is a completeness constraint to the

specification.

Maintenance Problems

The maintenance problems, which we identified by using the ObjectLens, can be classified into two

groups. The first group contains problems, which result from the poor support of inheritance by the

ObjectLens. In the second group are problems, which result from the move to a product family with

different datamodelSpecs. The origin of both problem groups is redundancy.

Class Hierarchy Problems

The lens structure type of a class defines all instance variables of a class including inherited vari-

ables. This is necessary because the corresponding table has to store all variables of the objects. There-

fore, in each subclass of a class all instance variables of that class have to be defined once again. There

is no single source principle for the specification of the mapping of instance variables.

 These multiple definitions lead to some maintenance problems. If a new subclass is added to a

dataModelSpec using the lens data modeler, the mappings of the inherited instance variables are not

1. The literal array is not described in all details. Only the most important aspects are shown.

Figure 4: Example dataModelSpec

dataModelSpec
"LensEditor new openOnClass: self andSelector: #dataModelSpec"

<resource: #dataModel>
^#(#{Lens.LensDataModel}

#setDatabaseContext:
#(#{Oracle7Context}

#username: 'lens'
#environment: 'lensDB')

#structureTypes: #(
#(#{Lens.LensStructureType}

#memberClass: #{COLAdresse}
#setVariables: #(

#(#{Lens.LensStructureVariable}
#name: 'dependents'
#setValueType: #Object
#generatesAccessor: false
#generatesMutator: false
#privateIsMapped: false) ...

10

taken over. They have to be specified again, what is cumbersome and error prone. If a new variable is

added to a superclass then all lens structure types of the subclasses have to be changed. The renaming

of an instance variable of a superclass requires analogous adaptations. The same instance variable can

be mapped variously to the database in different subclasses. In some situations, this flexibility could be

an advantage. More often, different mappings are unwanted and only the result of missed adaptations.

For example the property sex of a person is mapped to {’m’,’f’} in some subclasses and to a boolean in

other subclasses of the same data model.

The same situation occurs if the superclass of a class is changed. In this case all instances variables

of the old superclass have to be removed from the specification and all instance variables of the new

superclass have to be added with the correct mapping. Figure 5 shows an example. The superclass of

the class AtzBeleg is changed from ZEBeleg to BelegMitRechtskreis. The red-colored variables are

changed. They need therefore a new mapping. If you remember that these are information of the super-

class you understand that each change in the class hierarchy inflicts subclasses directly.

Multiple datamodelSpec Problems

One monolithic datamodelSpec is used to describe the data model of an application. The data model

has to contain all entity classes of the application. When we switched from one application to a product

family, we had suddenly to deal with multiple datamodelSpecs. Common shared core modules and

Figure 5: Changing the Superclass

11

domain specific modules characterize the product family. If we start a new project for a customer in

the domain context, we often copy and paste an existing dataModelSpec of an old project. Then this

datamodelSpec is adapted to the new requirements.

Concerning the common core modules, all our dataModelSpec have overlapping parts. So changing

the mapping of a superclass in a core module results not only in modifications of the subclasses in one

datamodelSpec, but also in all the other datamodelSpecs. Extending a core module by a new persistent

class requires again modifications to all datamodelSpec. If these changes are not maintained to all

applications then inconsistencies and different mappings may arise.

The origin of all these problems is the redundant specification of instance variable mappings in sub-

classes and datamodelSpecs. There is no single source principle for specifications of the ObjectLens.

The DataModelMerger as a first Solution Approach

The main idea to resolve the maintenance problem is to reduce the redundancy. Our first approach

was to separate the datamodelSpec into different parts. We specified complete datamodelSpecs of sub

domains. These subdatamodelSpecs are comparable to subcanvasSpecs of the GUI framework and are

merged into one dataModelSpec by a data model merger (figure 6).

The composition of the subdataModelSpecs is simple. All structure types of the subdataModelSpecs

are added to the aspect ’structueTypes’ of the composed dataModelSpec (see figure 3 for the base

structure of a lens data model). If a structure type is already included in the composed data model then

another structure type of the same memberClass is not added once again. In this way, a coarse-grained

modularization of the ObjectLens is achieved.

Nevertheless, this approach remains unsatisfactorily. At first, it solves not the class hierarchy prob-

lems. At second, the domain subdataModelSpecs are still too extensively. Each subdataModelSpec has

to be complete with regard to all used lens structure types. Therefore, there are common classes like

Employee, Employer, or Person, which are included in all subdataModelSpecs. At third, the subdata-

ModelSpecs includes often classes, which are not needed. Some of these classes can be removed from

the data model by including these into the ignore set.

Summary

In conclusion, the dataModelSpec is a declarative description of a data model. It is coded as a literal

array. Unfortunately, the dataModelSpec is a monolithic definition, which has only limited support for

inheritance. Therefore, a number of problems occur during defining and maintaining such data model

specifications. The origin of all these problems is the redundant specification of instance variable map-

pings in subclasses and datamodelSpecs. This redundant definition leads to problems when adding or

changing variables of a superclass, when adding a new subclass or when changing the superclass.

Specification conflicts can occur if the same variable is mapped differently in different subclasses. The

main idea to resolve these maintenance problems is to reduce the redundancy.

Figure 6: Data Model Merger

DataModelMerger new
 mergeAll: (OrderedCollection new
 add: self dataModelVifaSpec;
 add: self dataModelAtzSpec;
 add: self dataModelSVLuftSpec;

 yourself)
ignore: #(#(

#COLAZ03)
 #(#COLAZRR)
 #(#COLRueckzahlungssatz))

12

Modularization of the ObjectLens

Up to now, we introduced the ObjectLens and described their relational database mapping and asso-

ciated disadvantages. Now we explain our approach to overcome these problems in the following sec-

tions. At first, we describe the general ideas and aims of the solution. Then we point out the definitions

of the lens mapping for the single domain classes. After that, we demonstrate the integration of the

mappings of the single domain classes into one data model of the lens application. Then we explain the

migration of our old data models into the modular data models. At the end, we show the integration of

our approach into the common database developer tools of VisualWorks.

General Ideas and Goals

The general aspects of our solution are modularization and the use of inheritance. If you remember,

the lack of inheritance and the monolithic design of the data model specifications of the ObjectLens are

the origin of redundancy and the related problems. We decided to break up the monolithic specification

in several pieces with each piece describing the mapping of one class1. Furthermore, we use inherit-

ance if we want to describe the object relational mapping for one class. Therefore, only the parts of a

class without inherited variables have to be considered. The data model specification of a lens applica-

tion is defined by the data model specifications of the contained set of classes. That means that the sin-

gle class data specifications are the pieces from which the whole data model specification is con-

structed. The result is a normal, but generated monolithic data model specification of the ObjectLens.

Therefore, we changed only the definition and construction process of the data model specifications.

This approach gives us the desired advantages. We achieve a better adaptation, a unification of the

data representation of different applications in the product family and the use of inheritance. In some

way, we look at the datamodelSpec as one aspect of the class and organize this aspect by the class

itself. The modularization of the datamodelSpec simplifies the maintenance affords significantly.

Instead of changing a central monolithic definition, we change only the modular definitions of the con-

cerned classes.

 Therefore, our solution consists of four parts. We store the mappings in the domain classes. We

construct automatically the datamodelSpec from these mapping fragments. We support the common

development tools. We support the migration of our existing data model specifications.

Data Model Mappings of Classes

The data model specification of a class defines the corresponding lens structure type, whereby defi-

nitions of inherited variables are obtained from the superclasses. The definition of one class uses the

definition of the superclass. Variables are described as lens structure variables (remember figure 3).

The lens structure type of a single class can easily be integrated in the aggregated data model specifica-

tion.

Figure 7 shows the public protocol for defining the data models of a class. This definition uses the

template method pattern like the methods printString and printOn: ([ABW 1998], [GHJ+ 1998]). The

method dataModelDefinition provides an abstract implementation, which should be used by all classes.

The method dataModelDefinition should not be overridden. First, the method primDataModelDefini-

tion is called, which provides the standard implementation. After that, the method primLocalDataMod-

elDefinitionChanges: is called. This method gives each class the opportunity to override the inherited

definitions. Whereas the method primDataModelDefinition will usually be automatically generated,

the method primLocalDataModelDefinitionChanges is created by hand and describes changes, which

should not be overridden by further generation steps. The persistent classes of our product family are

1. This approach is comparable to instVarMaps of GemStone. You can control instance variable mapping between

GemStone and your client Smalltalk by using these methods ([Gems 1996]).

13

subclasses of COLPersistentModel. Therefore, we define the template methods for defining the lens

structure types in this class in the method protocol ’lens data model specs’.

Figure 8 shows the basis hook method of the class COLPersistentModel and a further example. It

also displays the usual way in which a lens structure type is defined. We use the LensMetaData classes

directly. At first, we create an object of class LensStructureType. After that, the member class and the

table are set up. The other example demonstrates the definition of structure variables of the persistent

instance variables. Here we use the literal encodings. The decision to use literal encodings for variables

is a pragmatic one. We want to simplify the migration process of our existing dataModelSpecs and we

want to use the facilities of the ObjectLens for generating lens encodings. Variables with simple data

types are directly included in the method. Instance variables for object references (foreign key relation-

ships) are defined in separate methods, because our objects use two-dimensional primary keys and

therefore the corresponding literal encodings are more complex. At the end, primary key and table

name are defined1.

1. In general the primary key is taken from the superclass and the table name is set to the name of the class.

Figure 7: Public Protocol for Class Data Model Definitions

dataModelDefinitionSpec
" You should not override this message. "

 ^ self dataModelDefinition literalArrayEncoding

dataModelDefinition
" You should not override this message. You can adapt primDataModelDefinition"

| type |
type := self primDataModelDefinition.
self primLocalDataModelDefinitionChanges: type.
type variables: (List withAll: type variables).
type resolveStandalone.
^type

Figure 8: Hook Method primDataModelDefinition

COLPersistentModel>>primDataModelDefinition
 "hook method"

| type |
type := LensStructureType new.
type memberClass: self.
type table: ((Oracle7Table new) name: self name; owner: 'COLBAV').
type idGeneratorType: #userDefinedId.
^type

 primDataModelDefinition
| type |
type := super primDataModelDefinition.

type variables add: #(#{Lens.LensStructureVariable} #name: 'name' #setValueType: #String #fieldType:
#String #column: #(#{Oracle7TableColumn} #name: 'name' #dataType: 'varchar2' #maxColumnConstraint: 100)
#generatesAccessor: false #generatesMutator: false #privateIsMapped: true) decodeAsLiteralArray.

self addSummenspeicherVariableIn: type.

type idVariable: #('ungueltigAb' 'referenzID') .
type table name: 'kontoZuordnung' .

^type

14

Figure 9 shows an example for the hook method primLocalDataModelDefinitionChanges:, which

can be used for adapting inherited properties. In the example, the variable speicherBeleg get a new

type. On the database the variable speicherbeleg is mapped as a foreign key relationship to the table of

AtzSummenspeicherBeleg. This allows the simulation of covariant instance variable redefinitions1.

The hook methods primDataModelDefinition and primLocalDataModelDefinitionChanges are used

to define a lens structure type of a class. The template methods dataModelDefinition and dataModel-

DefinitionSpec are the public interface. They are used for integrating the class fragments into the whole

data model specification.

LensApplication datamodelSpec

Now we consider the application side. Like we showed above, the old data model specification

describes the data models of the persistent classes of an application. Therefore, we need to define the

set of classes, which belong to the data model. This is done by the class method dataModelClasses.

The set has to include all classes, which are referred in the data model (transient closure), otherwise the

data model specification cannot be created. We choose this decision to make the declaration explicit.

There are methods, which can calculate the transient closure of a set of classes so that the resulting data

model is complete.

The second step is the generation of the whole data model specification from the data model classes.

We describe this construction top down. The top method is the method dataModelSpecGenerated (fig-

ure 10). In this method, an object of LensDataModel is created from the specifications of the data

model classes. This is done by the code fragment "self dataModelSpecForStructureTypeSpecs: self

dataModelStructureTypeSpecs". The method adaptDataModel is a further hook method, which permits

of adaptations, which are only valid for this special application. In the last step, the data model is com-

piled and the method returns the literal encoding of the data model. This method is quite short in con-

trast to our old dataModelSpecs with more than 15000 LOC of formatted code.

Now we consider the method dataModelSpecForStructureTypeSpecs and its implementation (figure

11). The method returns the data model specifications of the data model classes. The method data-

ModelStructureTypeSpecsFor: shows the connection to the data model specifications of the classes

(see Data Model Mappings of Classes, S. 12). For each class in the set of data model classes the corre-

sponding literal encoding is collected.

1. For an explanation of the co- and contravariance issue of object-orientation see [AbCa 1996], [CHC 1990],

[Prass 2002].

Figure 9: Hook Method primLocalDataModelDefinitionChanges

 primLocalDataModelDefinitionChanges:type
| var |
super primLocalDataModelDefinitionChanges:type.
(type variableNamed: 'speicherBeleg') setValueType: #AtzSummenspeicherBeleg.

Figure 10: LensMainApplication class >> dataModelSpecGenerated (Part 1)

dataModelSpecGenerated
| ldm |
(ldm := LensDataModel new)

application: self;
fromLiteralArrayEncoding: (self dataModelSpecForStructureTypeSpecs: self dataModelStructureTypeSpecs).

self adaptDataModel: ldm.
ldm compile.
^ldm literalArrayEncoding

15

The last step concerns the implementation of the method dataModelSpecForStructureTypeSpecs

(figure 12). The array of data model specification literal encodings for the data model classes is

inserted in the data model template. The method dataModelTemplate provides the general template of

the lens data model encoding (see also figure 3). The array of structure types is put at position 5.

These few methods describe the generation of the data model specification of the application from

the specification fragments of the data model classes. The two central aspects are the determination of

the set of data classes and the knowledge that for the generation of the data model specification of the

application only the specifications of the lens structure types have to be inserted.

Integration into the Lens Modeling Tools

Now, the integration into the lens modeling tools is explained. One of our goals was to support the

lens modeling tools so that each developer can use these tools in the usual way. Otherwise, the accep-

tance of the new approach would only be low.1

The first tool, which we want to support, is the lens editor. The lens editor shows the classes of a

data model. Therefore, we provide an opportunity to generate a lens data model for a single class or a

set of classes. This is shown in figure 13. We extend the lens editor by a further selection dialog, which

allows the selection of data classes. The method openLensEditorFor:with: is called for the set of

selected classes. In the example, only class AtzBeleg is chosen. The method openLensEditorFor:with:

calculates all classes, which are needed to construct a complete data model. Therefore, the data model

contains not only class AtzBeleg but also further classes, which are referred by AtzBeleg. The so gener-

ated data model can be manipulated in the same way like the old data models.

Secondly, we support the mapping tool. The mapping tool allows the definition of the mapping

between variable and column. In the mapping tool only a single class is considered (figure 14). There-

fore, the mapping tool is the suitable place for creating the class data model. We integrated a new menu

item 'Generate Lens Mapping for Class...', which opens a multi-selection dialog for the class and its

1. The development of new lens tools was beyond the scope of our solution.

Figure 11: Methods dataModelStructureTypeSpecs and dataModelStructureTypeSpecsFor: (Part 2)

dataModelStructureTypeSpecs
^ self dataModelStructureTypeSpecsFor: self dataModelClasses

 dataModelStructureTypeSpecsFor: classColl
^ (classColl collect:[:cl | cl dataModelDefinitionSpec]) asArray

Figure 12: Method dataModelSpecForStructureTypeSpecs: and dataModelTemplate (Part 3)

dataModelSpecForStructureTypeSpecs: aColl
| res |
res := self dataModelTemplate copy.
res at: 5 put: aColl.
^res

dataModelTemplate
^#(#{Lens.LensDataModel}

#setDatabaseContext:
#(#{Oracle7Context} ...)
#structureTypes: #()
#lensPolicyName: #Mixed
#lensTransactionPolicyName: #PessimisticRR
#validity: #installed)

16

superclasses. The DataModelDefinitionGenerator generates the method primDataModelDefinition for

the selected classes. Remember, the method primLocalDataModelDefinitionChanges is not generated.

DataModelDefinitionGenerator - Generation and Migration

The class DataModelDefinitionGenerator is responsible for the generation of data model fragments.

We use the DataModelDefinitionGenerator for migration of old monolithic dataModelSpecs as well as

for generating class data models in the mapping tool.

Figure 13: LensEditor for Class Data Models

LensMainApplication
openLensEditorFor: CollphirMainApplication
with: (Set new add: AtzBeleg; yourself)

Figure 14: Lens Mapping Tool for Class Data Models

DataModelDefinitionGenerator new
 generateLensSpecsFrom: self ldm

for: selectedClasses

17

The major steps of the migration process are described in figure 15. The DataModelDefinitionGene-

rator can transform a set of data models into a nested dictionary structure. This structure is described

by the transformation function T. The semantic domains are named after their corresponding classes:

Τ: IP(LensDataModel) → Dictionary[Class, Dictionary[Symbol, Collection]] with:

- IP(X) is the power set of X with: IP(X) =df {S: S ⊆ X}

- aDictionary =df {key i → value i : i = 1..n}

- T({aLensDataModel i : i = 1.. n}) =df {cl → aDictionary cl :

∃ k ∃ s (s <i cl ∧

LensStructureTypes ∈ aLensDataModel k ∧ k ∈{1, ..,n})1}

- aDictionarycl =df {#type → Set[LensStructureType] ,

#variables → aDictionary cl, variables}

- aDictionary cl, variables =df {symbol → Set[LensStructureVariable] :

symbol is a name of a instance variable, which is defined in the class cl}

For each class the structure of dictionaries collects a set of corresponding lens structure types and

for each instance variable a set of corresponding lens structure variables. Furthermore, the dictionary

structure includes all superclasses and their instance variables. The cardinality of the set of lens struc-

ture types and of the set of lens structure variables counts the number of definitions and is a measure of

the degree of redundancy. The transformation T collects all definitions for a single mapping and

merges all considered data models into one single structure.

Figure 16 illustrates the transformation and shows a simplified object view of transformation T2.

The dictionaries cluster and order the information hierarchical. The hierarchy-levels are determined by

the structure of a lens data model. The essential information is in the leaves of this tree. The class is

associated with its lens structure types. Each instance variable is associated with its lens structure vari-

1. There exists a number k and a subclass s with the following property: The class s is a subclass of cl and a Lens-

StructureType for class s is a member of the LensDatamodel with number k.

2. We use a simplified notation that is inspired by the object diagrams of UML ([RJB 1999]).

Figure 15: Migration Process

I). transformation T
generator := DataModelDefinitionGenerator new

add: AtzMainApplication dataSpec: #dataModelSpec;
add: ZwkMainApplication dataSpec: #dataModelSpec;
yourself.

II). conflict reports
generator report

III).data model classes
 generator

generateDataModelClassesFor: AtzMainApplication dataSpec: #dataModelSpec .

IV).generating of all classes
generator generate

generating of a subset of classes
generator generateLensSpecsFrom: ldm

for: (Set new add: COLRente;add: COLAZ03 ;add: COLAZRR ;yourself)

18

ables. These lens structure variables are collected from all subclasses of the class, which occur in the

data models.

In the following step, we calculated the conflicts between the different definitions of an entity. Here,

conflicts during the migration process were handled by a two-step strategy. At first, we eliminated triv-

ial conflict cases and tried to resolve as much conflicts as possible. For example, if different max col-

umn constraints occur, then we chose often the weakest one. Then we used pair reviews and decided,

which mapping should be become the standard. In a second step, we supported different mappings by

using the methods primLocalDataModelDefinitionChanges and adaptDataModel, which allows over-

riding already generated properties.

After that, we generate the code in two steps. First, we generate the method dataModelClasses for

the application. Then we generate the primDataModelDefinition method from the corresponding dic-

tionary cl. The method primDataModelDefinition is an aggregation of all lens structure variables of the

instance variables, which are defined in this class. Therefore, the method includes literal encodings for

each self-defined instance variable. Simple data mappings are inlined. Complicated mappings for for-

eign key relationships are extracted in separate methods.

For the code generation itself we use common Smalltalk techniques. We defined methods for invari-

ant code fragments and methods, which provides a string representation for related parts of the map-

ping like table name, primary key, or variables. Then we used a stream to merge this fragments. The

result is the source string of a Smalltalk method that we compiled in the metaclass of the considered

class in the protocol ’lens data model specs’.

Summary

The general aspects of our solution are modularization and the use of inheritance. The modulariza-

tion of the ObjectLens was a four-step process. Firstly, we defined the structure of the specifications of

the single data classes. Each data class got a description for its lens structure type. Secondly, we

defined the generation of the data model specification of the application. The data model specification

of an application is the sum of the data model specifications of a set of classes. Thirdly, we defined a

migration process, which translates the old data model specifications into the new structure. The gener-

ation process was mostly automatic. Conflict handling was semi-automatic and uses pair reviews. At

the end, we integrated the new procedure for defining data models into the modeling tools of the

ObjectLens.

Figure 16: Simplified Object View of Transformation T

aLensDataModel

aDictionary of class transformations

aDictionary for one class

transformation

transformed

includes

aDictionary of instance variable

transformations

aSet of LensStructureTypes

#type #variables

variable -> aSet of LensStructureVariables

includes

19

Conclusion

In this paper, we described an approach to replace the huge monolithic data model specification of

the ObjectLens by modular data model specifications and generated data models. In connection with a

product line strategy, the old monolithic OR-mapping design leads to a high degree of redundancy,

which complicates development and maintenance.

The main idea of our solution is to describe the mappings of each class in the class itself using

inheritance and generate the whole specification from a list of single class data models. In this way,

declarative and generative programming techniques are combined.

After some months of productive use, we can claim that we achieved our goals. The proposed solu-

tion works well. We migrated all old data model specifications of all our applications to the new proce-

dure. The integration of different domain modules is simplified. Often, only the method data-

ModelClasses needs to be adapted. The class data model specifications lead to uniform specifications

with lower definition conflicts. The creation and maintenance of the small class data definitions is

much easier then the old copy&paste approach. Furthermore, the support of inheritance leads to a ’sin-

gle point of definition’ approach and reduces redundancy extremely. Refactoring or extending class

hierarchies is much easier now.

On the implementation stage, we decided to reuse as much as possible from the ObjectLens. There-

fore, the data model mappings of the classes use the same lens literal encoding like the original specifi-

cations. The class DataModelDefinitionGenerator, which we used at first for the migration process,

was also suitable for the generation of the primDataModelDefinition methods by the mapping tool.

The initial primDataModelDefinition methods were generated from the old existing dataModelSpecs.

On the tools stage, the lens modeling tools were extended to support class data models. The

extended lens editor provides support for editing lens data models, which are constructed from a set of

classes. The extended mapping tool supports the generation of the method primDataModelDefinition,

which is the central part of the definition of the lens structure type of a class.

Literature

[AbCa 1996] Abadi, M.; Cardelli, L.: "A Theory of Objects" Springer. New York. 1996.

[ABW 1998] Alpert, S. R.; Brown, K.; Woolf, B.: "The Design Patterns Smalltalk Companion" Addi-

son-Wesley. Reading (Massachusetts). 1998.

[BaKi 2004] Bauer, C.; King, G.: "Hibernate in Action" Manning. Greenwich. 2004.

[BrWh 1996] Brown, K.; Whitenack, B.: "Crossing Chasms for Object-Relational Integration" in:

"Proceedings of the 3rd Conference on the Pattern Languages of Programs" 1996.

[Cinc 2003a] Cincom Systems: "VisualWorks: Version 7.2.1, Database Application Developer's

Guide". Cincom Systems. 2003. www.cincom.com/smalltalk

[Cinc 2003b] Cincom Systems: "VisualWorks: Version 7.2.1, Application Developer's Guide". Cin-

com Systems. 2003. www.cincom.com/smalltalk

[CHC 1990] Cook, W.; Hill, W.; Canning, P.: "Inheritance Is Not Subtyping" in: "POPL 1990" pp.

125-135.

[CoMa 1984] Copeland, G.; Maier, D.: "Making Smalltalk a Database System" in: "SIGMOD Record"

Volume 14. Issue 2. 1984. pp. 316-325.

[Date 1995] Date, C. J.: "An Introduction to Database Systems" Volume 1. Addison-Wesley. Rea-

ding (Massachusetts). 6. Edition. 1995.

20

[ElNa 1989] Elmasari, R.; Navathe, S.: "Fundamentals of Database Systems" Cummings Publishing.

Redwood City. 1989.

[Gems 1996] GemsStone Systems: "GemStone Documentation: Version 5.0" GemStone Systems, Inc.

Juli 1996.

[GHJ+ 1998] Gamma, E.; Helm, R.; Johnson, R. E.; Vlissides, J.: "Design Patterns CD: Elements of

Reusable Object-Oriented Software" Addison-Wesley. 1998.

[Howa 1995] Howard, T.: "The Smalltalk Developer’s Guide to VisualWorks" SIGS. New York. 1995.

[IBL 1998] IBL Ingenieurbüro Letters GmbH: "Polar(R) : Ein Werkzeug zur Abbildung objektori-

entierter Strukturen auf relationale Datenbanken (Produktpräsentation)" in: "Tagungs-

band STJA '98: Smalltalk und Java in Industrie und Ausbildung" 1998.

[KeCo 1996] Keller, W.; Coldewey, J.: "A Design Cookbook for Business Information Systems" sd&m

report. 1996.

[Knig 2004] Knight, A.: "Tutorial Using Glorp" in: "Proccedings of Smalltalk Solutions' 2004"

2004. www.glorp.org

[Meye 1997] Meyer, B.: "Object-oriented Software Construction" 2. Edition. Prentice Hall. 1997.

[Micr 1998] MicroDoc GmbH: "MicroDoc Persistence Frameworks für Smalltalk und Java: (Pro-

duktpräsentation)" in: "Tagungsband STJA '98: Smalltalk und Java in Industrie und

Ausbildung" 1998.

[Parc 1994] ParcPlace Systems: "VisualWorks: Version 2.0". Cincom Systems. 2003.

[Prass 2002] Prasse, M.: "Entwicklung und Formalisierung eines objektorientierten Sprachmodells

als Grundlage für MEMO-OML" Fölbach. Koblenz. 2002.

[RJB 1999] Rumbaugh, J.; Jacobson, I.; Booch, G.: "The Unified Modeling Language Reference

Manual" Addison-Wesley. 1999.

[Roos 2003] Roos, R. M.: "Java Data Objects" Addison-Wesley. Boston. 2003.

[TheO 1998] The Object People GmbH: "TOPLink: Persistenzframework für Smalltalk und Java

(Produktpräsentation)" in: "Tagungsband STJA '98: Smalltalk und Java in Industrie und

Ausbildung" 1998.

[Wool 1994] Woolf, B.: "Understanding and Using ValueModels" Whitepaper. Knowledge Systems

Corporation. 1994.

