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Abstract
Traits are method groups that can be used to compose
classes. They do not have a runtime existence and are con-
ceptually folded into the classes that use them. Traits have
been implemented in different languages. While implement-
ing them in Smalltalk, our first reflex was to take advantage
of the fact that traits are not run-time entities: we optimized
the implementation for space and hence shared methods be-
tween traits and classes. However, by doing so we broke the
introspective API of Smalltalk.

This paper illustrates a more general problem seen in
all reflective systems: the implementation serves both as a
model for execution and as the model that is exposed to
the programmer. There is a conflict of interests between
the information necessary for execution and the information
the programmer is interested in. In addition, as soon as
the implementation is exposed via reflection, we are not
free to optimize. As the complete implementation is visible
reflectively, there is no way to hide the optimizations.

Few papers report errors and this is one of them. We
report our experience facing the initial API mismatch, which
has a significant impact on the system because the language
is reflective (i.e., written in itself and causally connected).
We present the new introspective API we put in place.

Categories and Subject Descriptors D.3.2 [Programming
languages]: Object-oriented languages; D.2.3 [Software
Engineering]: Coding Tools and Techniques

General Terms Languages

Keywords traits, object-oriented languages, smalltalk, re-
flection, software evolution
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1. Reflection on Language Features
Reflective languages as described by the two following def-
initions have a causally connected representation of them-
selves.

“Reflection is the ability of a program to manipulate as data
something representing the state of the program during its
own execution. There are two aspects of such manipulation:
introspection and intercession. Introspection is the ability
for a program to observe and therefore reason about its own
state. Intercession is the ability for a program to modify
its own execution state or alter its own interpretation or
meaning. Both aspects require a mechanism for encoding
execution state as data: providing such an encoding is called
reification.” [1]

“A system having itself as application domain and that is
causally connected with this domain can be qualified as a
reflective system.” [11]

A reflective language is a good system to implement new
features since it is open and often malleable to changes
[6,9,12]. However, there is a cost in the fact that a reflective
system will reflect on its own implementation. This poses
a problem since the implementors are not able to freely
optimize the system without taking into account that users
can have access via the reflective API to the underlying
implementation. [8, 9].

There is a plethora of approaches introducing new fea-
tures in a language, but rarely do the authors evaluate the
cost related to the presence of the underlying language re-
flective API [2]. In this paper we present the lessons learned
from introducing traits and breaking part of the structural
MOP of Smalltalk.

Before illustrating the problem, we briefly present traits
and also the reflective API of Smalltalk that got affected by
the traits presence.

2. Traits in a Nutshell
Since this paper shows how the optimized implementation of
traits in Smalltalk broke part of the Smalltalk reflective API,
we present traits and stress some particular design points.



Traits are units of behaviour. They are groups of meth-
ods that act as behavioural building block of classes [5]. In
addition to offering behaviour, traits also require methods,
i.e., methods that are needed so that trait behaviour is ful-
filled. Traits do not define state, instead they require accessor
methods.
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    | value |
    self lock acquire.
    value := self read.
    self lock release.
    ^ value

syncWrite
    | value |
    self lock acquire. 
    value := self write.
    self lock release.
    ^ value

hash
    ^ self hashFromSync
        bitXOr: self hashFromStream

Figure 1. The class SyncStream is composed of the two
traits TSyncReadWrite and TStream.

Figure 1 shows a class SyncStream that uses two traits,
TSyncReadWrite and TStream. The trait TSyncReadWrite
provides the methods syncRead, syncWrite and hash. It re-
quires the methods read and write, and the two accessor
methods lock and lock:. We use an extension to UML to rep-
resent traits (the right column lists required methods while
the left one lists the provided methods).

Explicit composition. A class is then defined by specifying
its superclass, instance variables, and used traits. In addition
it is the responsibility of the class to explicitly resolve con-
flicts that may occur when two traits define methods having
the same name.

Trait composition is built around the following three
rules:

• Methods defined in the composer take precedence over
trait methods. This allows the methods defined in a com-
poser to override methods with the same name provided
by the used traits.
• In any class composer, the traits can be in principle in-

lined to give an equivalent class definition that does not
use traits.
• Composition order is irrelevant. All the traits have the

same precedence, and hence conflicting trait methods
must be explicitly disambiguated.

Conflict resolution. While composing traits, method con-
flicts may arise. A conflict arises if we combine two or more
traits that provide identically named methods that do not
originate from the same trait.

There are two strategies to resolve a conflict: by imple-
menting a method at the level of the class that overrides
the conflicting methods, or by excluding a method from
all but one trait. In addition, traits allow method aliasing;
this makes it possible to introduce an additional name for
a method provided by a trait. The new name is used to ob-
tain access to a method that would otherwise be unreachable
because it has been overridden [5].

In Figure 1, the class SyncStream is composed from
TSyncReadWrite and TStream. The trait composition asso-
ciated to SyncStream is:

TSyncReadWrite alias hashFromSync → hash
+ TStream alias hashFromStream→ hash

The class SyncStream is composed of (i) the trait TSyn-
cReadWrite for which the method hash is aliased to hash-
FromSync and (ii) the trait TStream for which the method
hash is aliased to hashFromStream.

Method composition operators. Trait composition is based
on four operators [5]: sum (+), override (.), exclusion (−)
and aliasing (alias →). For further details on trait composi-
tion, we refer to the traits paper [5].

Trait methods are then conceptually shared among all
the classes using them. As we will see, sharing traits at the
implementation level raises some problems in presence of
the reflective API.

3. Smalltalk reflective API in a Nutshell
Smalltalk offers a solid structurally reflective API [7, 12] as
well as some powerful behavioural capabilities [3, 4]. Here
we present only the ones required to illustrate our point.

Class as Objects. The programmer can introspect a class
and get access to all its local method selectors as well as the
inherited ones.

Point selectors Returns all the selectors of methods locally
defined

Point allSelectors Returns all method selectors including the
superclass ones

Point� #setX:setY: Returns a compiled method

Compiled methods as meta-objects. While in early Smalltalk
implementations a compiled method was an internal object,
it slowly acquired a reflective API in later versions. For ex-
ample, a compiled method knows directly its class in Pharo,
while before, all the system classes had to be queried. In
addition, a compiled method knows its selector and has a
property API to store additional state.

method selector Returns the selector of the compiled method
method methodClass Returns the class to which the compiled

method belongs

The variable method in the table above holds a compiled
method instance. A compiled method can be accessed by
sending the message � to a class with the method name as
argument, for example, Point� #setX:setY:.



4. Problems
In Squeak Smalltalk, like in most other Smalltalk dialects,
a compiled method is installed in the method dictionary of
a class. A compiled method is a regular object in mem-
ory and serves as a container for the bytecode of a method.
The source is stored in external files. As described in Lien-
hard’s Masters thesis [10], the implementation of traits in the
Squeak kernel takes the static approach where methods from
traits are propagated to classes at compile time. (An alterna-
tive strategy would have been to modify the method lookup
of the VM.)

In this first implementation of traits, we make use of the
fact that compiled methods can be shared1. When a method
is propagated from a trait to another trait or to a class,
the very same method object is installed. This means, that
method objects are shared between traits and classes. At
the time we designed the new traits kernel, the sharing of
compiled methods seemed like a reasonable design decision
because it avoided to recreate a new compiled method for
each class and hence saved memory.

While this optimization was good to optimize memory
usage, in the presence of an introspective API it turned out
to be a mistake. This became especially obvious when the
API of the class CompiledMethod was later extended. For
instance, querying for the class in which the method is in-
stalled or the method name by which the method can be
called, became ambiguous for shared methods. With this de-
sign, a correct implementation of this API was not possible
because storing the class and name of the method did not
make sense for shared methods.

The Case of Aliases. Aliases in traits are not method re-
names as in Eiffel. An alias is just a new name for an existing
method. Aliases are a good solution to let the programmer
access a trait method that has been redefined in the class.
Without aliases, the programmer would be forced to copy
and paste the hidden method. Again with a space optimiza-
tion in mind, aliases were implemented by adding an entry to
method dictionary and by sharing the aliased method. This
is a good solution for a non reflective language. The problem
is that a compiled method can be asked for its name. It is not
clear whether the aliased name or the hidden method name
should be returned.

Reflective API Problems. Besides the previous problems
that can be solved by not sharing the compiled methods,
there is a family of problems due to existing programs and
tools not being aware of traits. For example, the code file-
outer writes all the methods of a class to disk using the
message selectors. Therefore, in presence of traits, the trait
methods are saved as well mixed with the local methods.
A similar problem occurred at the level of the user inter-
faces. Browsing a class did not distinguish between method

1 One exception are methods with a super message send since they capture
the static superclass at which the lookup is started.

acquired by trait composition and local or inherited ones.
These problems were expected since the semantics of the
method selectors changed and tools needed to be adapted to
the presence of traits.

In summary, the sharing of method objects saved memory
but hindered the evolution of a sound reflective API. There-
fore, there was a need for a clear structural MOP that we will
present in the following section.

5. A Structural reflective API for Traits
The new MOP is based on three parts: the absence of sharing
between traits methods, a new API for navigating classes in
presence of traits, and a compiled method and trait centered
API.

5.1 Class and Traits
Common API of Classes and Traits. Classes and traits
have a common interface as both are behaviors holding sets
of methods. This means that both traits and classes can often
be treated the same. Therefore, even though traits are a new
concept, all tools working on classes can be easily adapted
to take traits into account.

In the following, we present the common reflective API
that is provided by both traits and classes.

traits A collection of traits that are directly used
allTraits The transitive closure of all traits used
selectors The names of all methods installed in the method

dictionary (i.e.,, methods implemented in classes
and traits and methods obtained from traits)

allSelectors Like selectors, but including superclasses of
classes

localSelectors Like selectors, but excluding methods obtained
from traits

Global API to Access Traits and Classes. The global
namespace (Smalltalk) contains both classes and traits.
The existing API to access classes continues to work with
classes:

Smalltalk allClasses all classes, no traits
Smalltalk allClassesDo: aBlock iterate over all classes

For traits, the following methods where added:

Smalltalk allTraits all traits
Smalltalk allClassesAndTraits all traits and classes
Smalltalk classOrTraitNamed: aString returns class or trait
Smalltalk allClassesAndTraitsDo: aBlock iterate over classes

and trait

5.2 Non Sharing
The new implementation copies the method instances and
their source code on a per use basis (for each class or trait).
This way a compiled method has a unique selector and a
unique class to which it belongs. The source is also not
shared anymore since with aliases the selector of a method
can differ from its original (in the old implementation, the
source was patched before shown to the user). We propose a
finer MOP for compiled method as shown below.
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     ^ 'Trait1>>c'
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Figure 2. Covering all situations with traits and classes.

As we do not share the methods anymore, there will be a
slight increase in instances of class CompiledMethod in the
system. We show the increase for Pharo version #10337:

Number of Classes 1803
Number of Traits 75
Number of Methods with sharing 35650
Number of methods with copying 38287
increase 7.39%

5.3 New Compiled Method MOP
While just copying all the trait methods resolves the issues
related to the lack of a one to one mapping between a name
to access a metaobject and this metaobject, it does not really
help clients to build (meta) applications in presence of traits.
We present now that just adding one extra concept, the origin
of a compiled method, results in a solid API. It should be
noted that this solution was not that obvious at the beginning
and that several iterations were necessary to arrive to this
minimal yet expressive API.

Let us take the situation described by Figure 2. While
abstract, it illustrates all the cases of trait usage, aliasing and
local method definition.

Compiled method methodClass. The message method-
Class always returns the class in which the method is either
local or used from a trait. methodClass therefore takes the
standpoint where all traits are flattened into the classes that
use them. If it is sent to a method from a trait, it returns the
trait itself.

The following tests illustrate the semantics of method-
Class when sent to traits. The traits Trait1 and Trait2 define

two methods named c. By default a method defined in a trait
answers its trait as its methodClass:

self assert: (Trait1>>#c) methodClass = Trait1.
self assert: (Trait2>>#c) methodClass = Trait2.

This allows clients to treat traits and classes polymorphi-
cally from their method perspective. An alternative design
would have been to return nil or raise an exception when sent
to a trait.

The method c is redefined locally in the class C. The
expression c methodClass returns C since the method is
redefined locally. In addition c2 methodClass returns the
same result, since the trait Trait2 is used by the class C. In
presence of aliases as with the class D, which aliased the
method c2 as c3, the methodClass is the class in which the
alias occurs.

self assert: (C>>#c) methodClass = C.
self assert: (C>>#c2) methodClass = C.

self assert: (D>>#c) methodClass = D.
self assert: (D>>#c2) methodClass = D.
self assert: (D>>#c3) methodClass = D.

Finally, even if a trait is composed of other traits (as Trait3
is composed of Trait2 in Figure 2), the methodClass of c2 in
class A is A.

self assert: (Trait3>>#c) methodClass = Trait3.
self assert: (A>>#c2) methodClass = A.

Compiled method selector. The selector of a compiled
method is always the selector of its current use. In particular,
an aliased method has the name of its alias name.

testSelector
self assert: (A>>#c) selector = #c.
self assert: (C>>#c) selector = #c.
self assert: (Trait3>>#c) selector = #c.
self assert: (Trait3>>#c2) selector = #c2.
self assert: (D>>#c3) selector = #c3.

Compiled method origin. Finally, in contrast to method-
Class which always represents the current container of the
receiver, we introduced the message origin which returns
the defining class or trait of a compiled method. Such mes-
sage makes the development of tools much simpler since the
client does not have to navigate the internal trait composition
structure.

The origin of c2 in the trait Trait3 is Trait2 because it is
not redefined in Trait3 (same for D�#c2). Class A gets the
method c from the Trait3 and not Trait2 which also defines it,
since Trait3 locally redefined it.

self assert: (Trait3>>#c2) origin = Trait2.
self assert: (A>>#c2) origin = Trait2.
self assert: (D>>#c2) origin = Trait2.
self assert: (A>>#c) origin = Trait3.

Method c is defined locally in class C, which overrides its
definition from Trait2. Its origin is then such a class C.

self assert: (C>>#c) origin = C.



Since class B excluded method c from Trait2 and got the
one from trait1. The origin of c is Trait1. Finally the origin of
method c3 in class D which is an alias to the method c2 is the
class Trait2. Here even if the method C3 is only defined in D
the API stresses its origin as a copy of c2. We may change
this decision based on user feedback.

self assert: (B>>#c) origin = Trait1.
self assert: (D>>#c3) origin = Trait2.

6. Discussion
Introducing a reflective API for traits has shown a general
problem of reflective systems: as the implementation serves
both as the structure for execution and the structure for
reflection, any implementation artefact will have an impact
on reflection. Any optimization will be visible and can lead
to problems like in the case of compiled methods sharing.

In this paper, we solved the problem by not optimiz-
ing compiled method sharing. But optimizations like these,
especially concerning memory usage or execution perfor-
mance, can be of great value to make a reflective system
practical. Conversely, any definition of a MOP will put con-
straints on the implementation. Kiczales and Lamping [8]
report their problems designing a MOP that would not con-
strain the implementors.

What we need is the ability to have multiple meta-models
being available in the system. A low-level one concerned
with execution and one or more higher-level models con-
cerned with providing information for the programmer. By
doing so we would be reifying the differences in behavior
perceived throughout our analysis. Thus, providing different
behavior for the different requirements.

6.1 Mirrors
Bracha and Ungar discuss three principles to build reflective
APIs [2]. Encapsulation: meta-level facilities must encapsu-
late their implementation. Stratification: meta-level facilities
must be separated from base-level functionality. Ontological
correspondence: the ontology of meta-level facilities should
correspond to the ontology of the language they manipulate.

As a solution, Bracha and Ungar propose Mirrors. Reflec-
tive capabilities are provided by mirror objects. A solution
with mirror-like meta-objects is possible for the problem we
encountered in this paper.

We may wonder why a compiled method which is a run-
time object needs to know about its class and its selector.
This question is valid and interesting. Especially when we
see that a compiled method should be accessed via its class
using a defined public API (A�#foo or A compiledMethod-
For: #foo).

Let’s discuss an alternative design: suppose we introduce
a separate compiled method metaobject in addition to com-
piled methods. In such a design, a compiled method does not
act as a metaobject and it only holds information for playing
its role; in such a case a compiled method does not know

its class nor its selector and as such can be easily shared.
Now since we still need a metaobject for compiled method,
we introduce a dedicated class CompiledMethodMetaOb-
ject, which holds a compiled method, its class and selector.
The system should be adapted to return CompiledMethod-
MetaObjects instead of compiled methods. With such a de-
sign, it is interesting to see that the compiled method could
be shared but not its metaobject. Now the question of the
flow of API use is interesting. Indeed, a compiled method
should not hold a pointer to its metaobject as the definition
below illustrates. Else we can be in exactly the same situa-
tion we describe in the beginning of the paper.

CompiledMethod>>selector
^ metaObject selector

Therefore compiled methods should only be manipulated
through their metaobjects. This indicates a layering between
the reflective API and its domain. Such a solution goes in the
same direction of Mirrors where default Smalltalk reflective
objects such as classes are separated into domain objects and
their reflective counterpart.

6.2 Towards Multiple Meta-Models
The problem we encountered is actually very interesting
for research: how can we put support for multiple meta-
models into the reflective core of the language? Mirrors
provide a first step towards solving this problem, but we
think that more work is needed. For example, it is not clear
how to manage the causal connection of the base-level with
the multiple meta-models or how to model the connection
between multiple meta-models.

7. Conclusion
We have presented a new reflective API concerned with the
structure of classes and traits. The realization of this API
showed a general problem of reflective systems: the imple-
mentation serves as the model for reflection and therefore all
implementation-level artefacts are visible for reflection.

We solved the problem by not optimizing for space (not
sharing compiled methods) and presented the new reflective
API.

The problem presented in this paper is not new. However,
while a large body of work introduces new concepts in cur-
rent reflective languages, really few were concerned about
the impact of such introduction and the difficulties faced be-
cause of the presence of reflective API.

Beyond the direct scope of the paper, the problems show
that more research is needed to make it possible to have mul-
tiple meta-models to be able to represent both an optimized
model for execution and high-level models for the program-
mer.
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