
Bonding with Pango

Travis Griggs
GUI/Tools Lead

15 September 2010

Who Am I?

•Not yet 40

•Cincom GUI/Tools Team Lead

• Since ObjectWorks 4.0 (HPUX Beta)

What’s This About?

•Not a Tutorial

• Experience Report

• I’m no expert, I just know more than I used to

What’s Pango?

•Παν語

• “Pango is a library for laying out and rendering of text,
with an emphasis on internationalization. Pango can be
used anywhere that text layout is needed... ...The
integration of Pango with Cairo provides a complete
solution with high quality text handling and graphics
rendering.”

•Owen Taylor

• Behdad Esfahbod

Our Baseline

•Classic Roman Text Rendering
 1:1 code point to grapheme mapping
 Left to Right

•ComposedText (Paragraph)
 indenting & tabs (left)
 word wrapping
 alignment
 justification
 font resolution (underline, bold, italic, color, couple others)

Challenge 1: Glyph Resolution

•Want to show strings of mixed charsets (despite any
base font)

•Will it show everything? Yes... if you have enough fonts

• First rite of passage: “The Character Map Viewer”

Challenge 2: Right to Left Rendering

• wef a eman to ,werbeH ,naisreP ,cibarA

• ...sdrow dnasuoht a htrow s’erutcip A

Challenge 3: BIDI

• Bi-Directional text support

• If we mix texts of different directions, we’d like that to
look right too

• Yeesh. Yet another “Hello World” example...

• Followed by a more “timely” example...

Challenge 4: Shaping

• The story of Å and Å, the Diacritical Twins

• Back to our sandbox to play some more...

Challenge 5: Vertical Text

• Some writing systems still go right to left in vertical
columns (e.g. Asian Print)

• Another example...

Challenge 6: Text Transformation

• In addition to drawing, Pango can emit vector
information for the outlines of the glyphs it would draw

•Once we have the vectors, we can manipulate it
however we want

•More Demos (2 of ‘em)...

Challenge 7: Interacting with Layouts

• For many, just rendering is enough

• If your user will “interact” with these layouts though, you
need to be able to translate to/from the input devices the
user uses

• Final “Rite of Passage”, building a real editor...

Binding Overview
• Similiar to CairoGraphics binding

• As Faithful as Possible to Pango API names

• Pango coordinates always in scaled integers (x1024),
always converted via toPangoScale/fromPangoScale

•Only the “basic” APIs, no need to engage the low level
rendering pipeline APIs (yet)

•Only mapped for the Cairo backend

Binding Overview: Layout
• Primary Object; everything ComposedText does plus:

 Variable line height
 Forced single line mode
 Direction control (explicit or automatic)
 Ellipsification
 Simple API for setting font/size
 Spacing
 3 kinds of word wrap
 Various measuring APIs
• ink and logical extents
• cursor locating
• points to positions
• positions to points

Binding Overview: FontDescription

•Describes a font request, either in full, or partial
• Simple fromString: creator (e.g. ‘Arial, 24’ ‘Mincho, 13px’)
•Can set/get:

 family
 gravity
 pixel size
 point size
 stretch (condensed, expanded, etc)
 style (oblique, normal, italic)
 variant (normal, smallCaps)
 weight (boldness)

Binding Overview: LayoutLine

• Additional querying/measurements

•Can be rendered/pathed individually

Binding Overview: Iterator

• Enumerates Layouts
 by line...
 or by character...
 or by cluster...
 or by run...

• Accesses the current one of any of those

•Other measuring/querying information
 extents
 current y values and baseline

Binding Overview: PangoContext

•Usually “just taken care of”

•Can be used to access/set:
 resolution (ppi)
 gravity
 direction
 default FontDescription

•Query available font families

•Query font metrics

Binding Overview: TabArray

•Manages tab information for a Layout

• Similiar to an Array interface

• APIs for setting left, right, center, and numeric tabs, but
currently only actually does left

Binding Overview: Various Constants

• Each Pango ENUM type is turned into a subclass of
CairoGraphics.Constant

• ENUM members are expressed as class side methods

• Example:

 aLayout ellipsization: EllipsizeMode right

Binding Overview: AttributeList

•One per Layout

• Analogous to RunArray

• Array like API

• contains Attributes

Binding Overview: Attribute
•Models a Range (or if no start/stop given, does all)
• Analogous to Text emphases

 backgroundColor
 family
 fontDescription
 foregroundColor
 gravity
 gravityHint
 language
 letterSpacing
 pixelSize
 pointSize

• Interned in Pango library, so not extensible

 rise
 scale
 stretch
 strikethrough
 strikethroughColor
 style (oblique as well as italic)
 underline (but 5 different kinds)
 underlineColor
 variant
 weight

Binding Overview: ShapeAttribute

• Takes a “data” pointer and extents (ink and logical)
•Context’s shape render callback processes them
• block: [:cr :attribute :doPath |]

ink: aRectangle
logical: bRectangle
• Blocks registered in a Smalltalk registry and associated

with the data value of the attribute, single universal
callback finds block associated with ShapeAttribute
instance and dispatches it
•Only does text replacement (for now)
• Pictures again?

Binding Overview: Markup

• Attributes can be computed from markup
• Example:

 ‘Hello <i>ESUG</i>’
 ‘Travis is feeling <span
color=”blue”>blue’

Issues: Memory Management

• Borrows same mechanism used by Cairo binding

•Not as consistent
 some Pango structures are ref counted (like Cairo)
 some are not refcounted, but still need to be freed if we created

them
 others are just interfaces and need no memory management

•No fun to figure out when it goes wrong

Issues: UTF8

•Can’t Random Access

• Size has to be computed

•Not as difficult tho, when you work in pointers

•Many Pango APIs are done in 0 based byte offsets,
which may jump

•No Endianness Issue

•Compact

Issues: Different Platforms

• Pango installed on any current Linux up-to-date distro

• Seems to work well on Windows, a real pain to build
there though

•Not good for “non-ascii” on OSX yet (needs CoreText),
not so bad to build

•Older Unix/X11 installs... mostly unknown

Cincom’s Plans

•None of what you’ve seen today is “committed” product
direction
•Recognition is the first step - Modern International Text

Layout is quite involved
• Some Observations:

 Pango is the “native solution” for Linux world
 Uniscribe is the “native solution” for Windows world
 CoreText is the “native solution” for OSX world (>= 10.5)
 GTK builds and uses Pango on Windows and OSX

• All in Smalltalk instead?
• Pros and Cons with using 3rd Party Libraries

Converting VisualWorks

•Could we just replace VW text rendering primitives with
Pango calls?

• Let me show you...

?

