A low Overhead Per
Object Write Barrier
for the Cog VM

' d

A —

INVENTEURS DU MONDE NUMERIQUE

® The CogVM is the standard VM for:

Pharo
Squeak

ewspeak

Uuis

® VWorking runtime optimizer for Cog’s JIT

® Problem with literal mutability

® |s it possible to mark any object as read-
only ?

® Smalltalk code to handle mutation
failure

® Overhead

® Discussion on VM mailing-list

® |mmutable: state cannot change after
object’s initialization

® Write barrier or read-only object

® Modification tracker
® Read-only literals
® Compiler optimizations

® |nconsistent literal modifications

® Others...

® NOT about framework built using read-
only objects

® |mplementation details to limit the
overhead

® Any object can be marked as read-only,
except:

Immediate objects
Context instances
Objects related to Process scheduling

Objects internal to the runtime

® Object >> isReadOnlyObject

® Object >> setlsReadOnlyObject:
® Object >> beWritableObject
® Object >> beReadOnlyObiject

® |nstance variable store fail

® Primitives mutating a read-only object fail

| message |

message = Message selector: #foo.
message beReadOnlyObject.
message setSelector: #bar.
message

® |nstance variable is not set.

® A call-back is sent:

message attemptToAssign: value withindex: index

| array |

array := Array with: 1.
array beReadOnlyObject.
array at: 1 put: 2.

array

® First value of array is not set

instVarAt: index put: anObject
<primitive: 174 error: ec>
self primitiveFailed

® new error code: #'no modification'

® Support flags

Smalltalk vm supportsWriteBarrier

® Mirror primitives

® Object >> object:setlsReadOnlyObject:

® VM C compiler flag

® TheVM can be compiled with or without
the feature.

® Object representation
® |nterpreter support

® ||IT support

® Most critical part:
® How to keep IV store efficient !

® Machine code generated by the |IT

® Discussed in the paper...

x86 Assembly

Meaning

movl -12(%ebp), %edx

Load the receiver in %edx.

popl Y%edi

Load the value to store in
%edi.

mov! %edi, %ds:0x8(%edx)

Perform the store in the first
instance variable using both
registers (Y%oedx and Y%edi)

testl 0x00000003, %edi

jnz after_store

If the value to store is
immediate, jump after the
store check.

movl 0x00040088, %eax

cmpl %eax, Yoedx

jb after_store

Jump after the store check if
the receiver is young:
compare the young object
space limit with receiver
address

cmpl Y%eax, Y%edi

jnb after_store

If the value to store is an old
object, jump after the store
check.

movzbl %ds:0x3(%edx), Y%oeax

testb 0x20, %al

jnz after_store

If the receiver is already in
the remembered table, jump
after the store check.

call store_check_trampoline

Calls the store check
trampoline.

after_store:

Code following the store.

® VWanted

® to show it,

—_—

x86 Assembly

Meaning

movl -12(%ebp), Yoedx

Load the receiver in %edx.

popl Y%eecx

Load the value to store in
%ecX.

movl %ds:(%edx), Y%eeax

testl 0x00800000, %eax

jnz store_trampoline

If the receiver is read-only,
jump to the store trampoline.

movl Y%ecX, %ds:0x8(%edx)

Perform the store in the first
instance variable using both
registers (%edx and %ecx)

testb 0x03, %:cl

jnz after_store

If the value to store is
immediate, jump after the
store check.

mov| 0x00040088, %eax

cmpl %eax, Y%edx

jb after_store

If the receiver is a young
object, jump after the store
check.

cmpl %eax, Y%ecx

jnb after_store

If the value to store is an old
object, jump after the store
check.

movzbl %ds:0x3(%edx), Y%eax

testb 0x20, %al

jnz after_store

If the receiver is already in
the remembered table, jump
after the store check.

store_trampoline:

call store_trampoline

Calls the store check
trampoline.

movl -12(%ebp), Yoedx

Restore the receiver (to keep
its register live).

after_store:

Code following the store.

® Binary trees

® |V Store intensive

® No significant difference

® Pathological case: setter

left: leftChild right: rightChild item: anltem
left .= leftChild.
right := rightChild.
item = anltem

® At writing time, setter overhead was |7%

® Stack frame creation problem

® [wo path compilation

® Now faster than before

t

: read-only objec
® Overhead is very limited

® New feature

