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Abstract
In several commercial Smalltalk, a program can mark any
object as read-only (unfortunately incorrectly sometimes
miscalled immutable). Such read-only objects cannot be mu-
tated unless the program explicitly revert them to a writable
state. This feature, called write barrier, typically induces
overhead, both in memory footprint and execution time. In
this paper I discuss the recent addition of the write barrier
in the Cog virtual machine and the support introduced in the
Pharo 6 image. I detail specific aspects of the implementa-
tion that allows, according to multiple evaluations presented
in the paper, to have such a feature with little to no overhead.

Keywords Language Virtual Machine, Just-in-Time Com-
pilation, Interpreter, Write Barrier, Store Check, Immutabil-
ity.

1. Introduction
Read-only objects are frequently used in several Smalltalk
dialects to ensure the unchangeable state of runtime objects
such as compiled methods’ literals and in the context of ob-
ject modification tracker frameworks such as Gem Builder
for Smalltalk1 (GBS). The Cog virtual machine (VM) [10]
is becoming the most popular open source Smalltalk vir-
tual machine, with multiple widely used Smalltalk clients:
Pharo [2], Squeak [7] and Cuis [3]. Unfortunately, the Cog
VM did not support read-only objects. I decided to introduce
such a feature, with the help and advises of the lead Cog VM
architect, Eliot Miranda.

In this paper, I discuss the design decisions behind the
write barrier and the implementation in both the Cog VM
and the Pharo 6 implementation. Other Smalltalk clients run-

1 GBS is a tool maintained and evolve by GemTalkTM Systems allowing
applications written in any Smalltalk dialects to communicate with the
Gemstone persistence layer.

[Copyright notice will appear here once ’preprint’ option is removed.]

ning on the Cog VM have or can have a similar implemen-
tation, but each Smalltalk dialect has some specificities so
I needed to pick a specific one to show the production im-
plementation. Pharo sounds reasonable as it seems to be the
most popular Smalltalk client.

Conceptually, having read-only objects requires each
store into an object to have an extra check to fail the store
if the object mutated is read-only. An extra check induces
extra memory and execution time overhead as additional
machine instructions are required to perform the check. In
addition, the memory representation of the object needs to
be adapted to encode the read-only property of the object.
The main challenge in the write barrier implementation is to
reduce the overhead, both in term of memory footprint and
execution time, as much as possible.

In most VMs for high-level object-oriented languages,
each store into an object has already multiple checks for the
garbage collector (GC) write barrier [8, 9]. In the implemen-
tation sections, I detail the most critical part: how the ma-
chine code generated by the JIT shares portion of machine
code between the read-only check and the existing GC write
barrier to limit the overhead.

2. Problem
In this section I specify what I mean by read-only object
write barrier, discuss the terminology used, then describe
briefly some use-cases and precise the problem statement.

2.1 Specification
The feature wanted, the write barrier, allows a Smalltalk
program to mark or unmark any object as read-only at any
time. Any write into a read-only object is intercepted before
the object is mutated and it should be possible to handle the
mutation failure in Smalltalk.

2.2 Terminology
This feature is called in some other Smalltalk, especially
VisualWorks, immutability. Using the term immutability was
contested by the Smalltalk community. Indeed, in object-
oriented and functional programming, for example in Racket
[4], an immutable object is an object which state cannot be
modified after it is created. Therefore, in our case, as the
programmer can revert the read-only state of an object to
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writable state at any time, the immutability definition does
not apply. This is why in Pharo and in this paper the feature
is called write barrier and not immutability.

2.3 Use-cases
There are multiple use-cases for read-only objects. I detail
here the two most important one.

Modification tracker. The most popular use-case is the
ability to track the mutations done to a specific object. In this
case, the tracked object is marked as read-only. Each muta-
tion of the tracked object triggers Smalltalk code specified
by the programmer to do something about the mutation (log-
ging, etc.). Then, the modification tracker framework tem-
porarily makes the object writable, performs the mutation,
and mark back the object as read-only to resume the execu-
tion while still tracking the object’s mutations. This modi-
fication tracking ability is for example use in Gem Builder
for Smalltalk, a framework to deeply integrate a Smalltalk
application with the gemstone persistence layer.

Core read-only objects. Another interesting read-only ob-
ject use-case, though less popular, is the ability to mark
runtime objects such as compiled methods’ literals as read-
only. Having the literals read-only allows compilers to make
stronger assumptions and allows more aggressive optimisa-
tions.

2.4 Problem: limiting the overhead
The problem statement is as follow:

Is it possible to mark object as read-only, forbidding any
mutations and letting Smalltalk code handle the mutation
failures, with little to no overhead in term of memory foot-
print and execution time ?

To solve this problem, I chose to extent the virtual ma-
chine. Indeed, I believe the solutions provided at image level
either induce an important overhead or do not catch all the
reflective APIs. For example, in Pharo, it is possible using
reflective APIs to activate any primitive operation on any
object in the system. Some primitives operations, such as
the at:put: primitive, mutate objects. Catching this kind of
cases is really difficult, maybe even impossible, without VM
support.

3. Solution: Low-level implementation
The solution was implemented in three steps:

• Enhancing the memory representation of objects to be
able to encode their read-only state.

• Adding support in the execution engine to forbid read-
only objects mutations.

• Adding support in the Pharo image to be able to use the
new feature.

Memory representation of objects. To support read-only
object, the first thing is to change the memory representation

of objects to be able to mark them as read-only. To do so,
each object needs a specific memory location to encode the
state: is the object read-only or not ? A bit seems appropriate
as there are only two possible cases. I detail later in the paper
the position of the bit.

The VM can directly access the object’s state, but the
Smalltalk code can’t. So I added two convenient primitives
in Pharo to access the bit state. One primitive tells if an
object is read-only or not, the other sets the object as read-
only or writable.

Execution support. The objects are mutated in two main
ways in the current virtual machine:

• By storing into one of their instance variable field (Byte-
code instruction).

• By performing a primitive operation that mutates object,
such as at:put:.

In the paper I omit explicitly another case, the literal vari-
able stores. In fact, for the execution engine, a literal vari-
able store is an instance variable store mutating the second
field of an object specified in the literal frame of the method.
Hence, all the discussions related to instance variable store
apply to literal variable stores. I don’t duplicate the discus-
sions to make the paper as it does not bring any interesting
concepts.

In the execution engine, instance variable store code was
rewritten to fail if the mutated object is read-only. If that
happens, a callback is triggered in the image to inform the
program that an attempt to assign a value to a read-only ob-
ject was made, and once the call-back returns, the execution
resumes after the store. The store is not performed by default
even if the call-back returns. By design, the VM assumes that
temp vectors (data structure used to store closure enclosing
context information), are never read-only.

The code of the primitives mutating objects was rewritten
to fail the primitive if they mutate a read-only object.

Limitations. While implementing our solution, I realized
it is really difficult to have a few specific objects read-only.

The first problem is related to process scheduling. At
each interrupt point, the execution may switch to another
process. Switching from a process to another process im-
plies multiple object mutations around process scheduling
objects, whereas the execution state (in the middle of a pro-
cess switch) is not in a state where a call-back can be safely
triggered in the image to inform the programs about the mu-
tations.

The second issue lies with context objects. Contexts rep-
resent method and closure activations. They are handled very
specifically in the virtual machine for performance and they
are mutated all the time during normal execution: any byte-
code operation requires at least to mutate the active context
program counter.

To solve these problems, I specify here a list of objects
that cannot be marked as read-only. Any attempt to mark
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those objects as read-only from Smalltalk will fail. These
objects are:

• Context instances
• All objects related to process scheduling:

the global variable Processor

the array of linked lists of processes (Processor in-
stance variable)

ProcessLinkedList instances

Process instances

Semaphore instances

I discuss in future work how one may be able to bypass
those limitations in the future.

4. Image API design and implementation
In this section I introduce the APIs added in the image
to support read-only objects. I do not discuss the in-image
implementation of features using the write barrier such as
an object modification tracker. I discuss only the interface
between the virtual machine and the image allowing to use
the write barrier and to build features such as an object
modification tracker.

4.1 Core write barrier primitives
Two main primitives were added into the Object class: Ob-
ject»isReadOnlyObject and Object»setIsReadOnlyObject:.

Object»isReadOnlyObject. The primitive answers a boolean,
depending if the object is marked as read-only or not. It
should never fail on a VM supporting the write barrier. The
primitive method code is available in Figure 1. The Pharo
6 production version is available with additional comments,
omitted in the paper.

Object>>isReadOnlyObject
<primitive: 163 error: ec>
^self primitiveFailed

Figure 1. Object»isReadOnlyObject primitive

setIsReadOnlyObject: This second primitive marks the
receiver as being read-only or writable, depending on the
boolean parameter.

The design of this method in Pharo can be questionable:
why having a single method with a boolean argument in-
stead of two methods ? The answer is simple, the number
of primitives has to be kept as small as possible for sim-
plicity, hence sharing the same primitive number for these
two operations seemed the right thing to do. However, for
convenience, I added two other (non primitives) methods,
Object»beWritableObject and Object»beReadOnlyObject, as
shown in Figure 2, that only calls Object»setIsReadOnlyObject:
with the corresponding boolean parameter.

The primitive method code is available in Figure 2. The
Pharo 6 production version is available with additional com-
ments, omitted in the paper.

Object>>beWritableObject
^ self setIsReadOnlyObject: false

Object>>beReadOnlyObject
^ self setIsReadOnlyObject: true

Object>>setIsReadOnlyObject: aBoolean
<primitive: 164 error: ec>
^self primitiveFailed

Figure 2. Object»setIsReadOnlyObject: primitive

4.2 Primitive fall-back
As stated in the Section 3, primitive operations mutating
objects fail if they attempt to mutate a read-only object.
Hence, each primitive failure code needs to be edited to
raise an appropriate error if it failed because of a read-only
object. For example, in the case of the primitive for at:put:,
the in-image fall-back code should check if the receiver is
read-only, raise an appropriate error instead of ’Instances of
Objects are not indexable’.

Unfortunately, this part has not, at the moment where I
write the paper, been integrated in Pharo 6.

4.3 Instance variable store
As instance variable stores are encoded directly in the byte-
code and not through message sends as primitives, they can’t
simply just fail or the VM state would be inconsistent. The
easiest way to handle this case was to add a VM call-back to
be performed when a store fails. An infrastructure for such
call-backs is already available and is used for example for
doesNotUnderstand:.

However, this VM-call back is more difficult to imple-
ment. Our specification requires the read-only failure to re-
sume execution, once the call-back is done, after the variable
store. The problem is that the VM does not expect any value
to be pushed on stack after a variable store.

If we take the example of doesNotUnderstand:, the call-
back is triggered during a message send. In Smalltalk, each
message send is expected to return a value, hence the value
returned by the doesNotUnderstand: method activation is
pushed on stack instead of the regular message send returned
value.

In the read-only call-back case, the VM does not expects
any value to be pushed on stack after a variable store. There-
fore, I needed to design a call-back that does not answer any
value. This is currently possible in Pharo by hacking the ac-
tive process. The cannotAssign:withIndex: call-back was de-
signed using this hack. After handling the mutation failure,
the call-back does not return any value as the code on Fig-
ure 3 shows. The comment "CAN’T REACH", as in the VM
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Slang code, indicates that the execution flow cannot reach
that part of the code.

attemptToAssign: value withIndex: index
| process |

"Handle here the mutation failure. Code omitted."

"Process hack to return no value"
process := Processor activeProcess.
[ | sender |

sender := process suspendedContext sender.
process suspendedContext: sender.

] forkAt: Processor activePriority + 1.
Processor yield.
"CAN’T REACH"

Figure 3. Pharo call-back implementation

4.4 Other in-image features
Support flags. The Cog VM provides to the Smalltalk
clients a set of parameters. In Pharo, the VirtualMachine in-
stance allows to do requests on the vm parameters. I added a
method, VirtualMachine»supportsWriteBarrier, which answers
if the VM currently used supports the write barrier feature.

Mirror primitives. The Cog VM supports having objects
with a class not inheriting from Object. Such objects are typ-
ically used for proxies. Sending messages to this kind of ob-
jects can be a problem: the object may not be able to answer
the message nor to answer the doesNotUnderstand: message,
leading to a VM crash. This kind of problems usually hap-
pens when the programmer attempts to debug a program
with proxy objects: in this case, the proxies understand all
the messages required for the application, but does not un-
derstand the messages required for debugging.

To avoid VmM crashes, proxies are debugged through
mirror primitives. For example, the primitive instVarAt:,
which answers the value of an instance variable of an ob-
ject, exist in two variants:

• instVarAt:: Answers an instance variable of the receiver.
• object:instVarAt:: Answers an instance variable of the ob-

ject passed as first argument.

The second version, ignoring the receiver entirely, is
called a mirror primitive. It is able to perform a primitive op-
eration on an object (in this case, the first argument), without
requiring the object to be able to understand a message.

In the context of the write barrier, I made sure the two
primitives isReadOnlyObject and setIsReadOnlyObject: were
also available as mirror primitives (the primitive number
is shared), in the form of object:isReadOnlyObject and ob-
ject:setIsReadOnlyObject:. This way, it is possible to modify
and read the read-only property of proxy objects without any
problem.

5. VM implementation
The VM implementation is split in three subsection, the
object representation, the interpreter and the JIT compiler
changes.

5.1 Object representation
Each object is represented in memory with an object header,
describing the object, and multiple fields, depending on the
object’s layout. Several bits in the object header are unused
and a single bit was reserved by design in the Spur Memory
Manager [11] for the write barrier. I used this bit to mark the
read-only state of an object, as shown on Figure 4.

s x x x x x x x n h x x x x x x x x x x x x x x x x x
x e z f x x x x o c x x x x x x x x x x x x x x x x

s

h

f

c

x

number of slots

identity hash

object format

class index

is grey ?

Spur's object header
s s s s s s s h h h h h h h h h h h h h h h h h

c c c c c c c c c c c c c c c cf f f f c

e is pinned ?

z is remembered ?

n is marked ?

o isReadOnly ?

unused bits

Figure 4. Object header memory representation in Spur

5.2 Interpreter implementation
5.2.1 Primitives.
I needed to add the support here for primitives to fail if they
attempt to mutate a read-only object.

Many primitives can already fail. For example, <primi-
tive:1>, the addition between two small integers, fails if the
argument is not a small integer. Hence, I needed to edit all
the primitives mutating objects to first check if the object
mutated is read-only, and fail the primitive if this happens.
This was quite tedious as I had to go through all the primitive
table and check manually for each primitive if the code mu-
tates an object. This task was simplified by the limitations:
as stated in Section 3, several objects can’t be read-only, so
the primitives related to process scheduling and context ac-
cessing don’t need to be changed.

5.2.2 Instance variable stores.
I needed to update the interpretation of instance variable
stores to fail and trigger the cannotAssign:withIndex: call-
back if the object mutated is read-only. Some aspects are
challenging.

Interpreter compilation and emulation. The interpreter
code is written in Slang, a DSL to write virtual machines
written using the Smalltalk syntax to be able to emulate the
execution on top of the Smalltalk VM. For the production
VM, Slang is compiled to C with the GNU extensions, which
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is then compiled to machine code. The C-language exten-
sions are critical for performance as an interpreter has a very
different behavior than mainstream C application.

C extension constraints. Most of the interpreter code is
compiled in a single C function. That function uses the
C-extensions to fix specific values to registers, such as
the Smalltalk stack pointer, frame pointer and instruction
pointer. The execution jumps quickly from the interpreta-
tion of a bytecode to the next one using threaded jumps the
the new bytecode execution code address. If the interpreter
needs to call another function, it needs to save the fixed reg-
isters manually and restore them upon function return if they
are going to be used.

Challenges met. This specificity is sometimes difficult to
handle because the execution flow in the extended C code is
non trivial to reproduce on the simulation engine which runs
on top of the Smalltalk VM. In addition, one has to be very
careful if the interpreter calls a function non-inlined during
Slang to C compilation in the main interpreter function to
correctly maintain the registers state.

Conclusion. To implement correctly the read-only write
barrier, both the simulation engine used for debugging and
the extended C code have to be correct and to have the same
behavior.

5.3 JIT compiler support
5.3.1 Primitives.
As for the interpreter, I needed to update the JIT to correctly
compile primitive operations.

Primitives redefined in the JIT. The interpreter primitives
are normally written in Slang and are compiled to machine
code as the rest of the VM. As the compilation is done
through the optimizing C compiler, the primitives perfor-
mance is usually very good. However, calling C code from
a machine code Smalltalk method has a cost: the runtime
needs to switch from the Smalltalk machine code runtime to
the C runtime, execute the primitive, then switch back to the
Smalltalk machine code runtime. This cost can be significant
on very frequently used primitives, as for example the addi-
tion between two smallIntegers. For this purpose, a set of
primitives is redefined in the JIT register transfer language
(RTL)2 and is compiled to machine code when the method
with the corresponding primitive number is.

For the purpose of this paper, we will consider there are
two kinds of primitives:

• Frequently called primitives: They are redefined in the
JIT’s RTL.

2 A register transfer language (RTL) is a kind of intermediate representation
that is very close to assembly language, such as that which is used in a
compiler. It is used to describe data flow at the register-transfer level of an
architecture

• Rarely called primitives: When a method with such prim-
itive is compiled to machine code, the machine code
switches to the C runtime and calls the interpreter primi-
tive code.

All the existing interpreter primitive code was updated
correctly when I patched the interpreter, so they correctly
fail for read-only objects. However, primitives redefined in
the JIT’s RTL needs to be updated to correctly fail if they
mutate a read-only object.

Updating at:put:. Fortunately, only two primitives consid-
ered as frequently called and therefore defined in the JIT’s
RTL mutate objects. The two primitives are the two versions
of at:put:, the generic one and the one for strings. I updated
these two primitives to generate machine code failing if the
receiver is read-only.

5.3.2 Instance variable stores.
With the write barrier, the machine code generated for in-
stance variable stores require an extra check to fail if the
object mutated is read-only.

Studied case. The JIT compiles to machine code the stores
differently depending on multiple constraints, for example
if the value assigned is a literal or what register is live or
not at this point in the code. In this subsection, I will only
discuss the most common case, a generic instance variable
store of the first instance variable of an object that we will
call a lambda store. Other cases are handled in a similar way.

GC store check. Before the write barrier implementation,
a lambda store needs to change in memory the value of the
instance variable and to deal with the GC write barrier. Cur-
rently, the GC requires each object from old space referenc-
ing a young object to be in the remembered table. Hence,
each store can require the VM to add an entry in the re-
membered table. In the future, there are plans to implement
an incremental garbage collector with tri-color marking [1],
adding new constraints to the write barrier.

Each store generates machine code to check if the ob-
ject needs to be added in the remembered table. If this is
the case, the VM calls a trampoline3 which saves the regis-
ters state, call the interpreter function adding the object in
the remembered table, restores the registers and resumes ex-
ecution. The existing machine code generated for a lambada
store is shown on Figure 5.

Naive read-only check implementation. I needed to add
the read-only check. My first idea was to add it at the begin-
ning of the store, once the receiver and the value to store are
loaded in register. As shown on Figure 6, I added a branch
which ensures that the receiver is writable and calls a tram-
poline to trigger the cannotAssign:withIndex: call-back if it’s

3 A trampoline is a specific machine code routine switching from the as-
sembly code runtime to the C runtime.
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Disassembly Meaning

movl -12(%ebp), %edx

popl %edi

movl %edi, %ds:0x8(%edx)

testl $0x00000003, %edi If the value to store is 
immediate, jump after the 
store check.jnz .+0x0000001b

If the receiver is a young 
object, jump after the store 
check.

movl $0x00040088, %eax

jb .+0x00000012

cmpl %eax, %edx

Load the receiver in %edx.

jnb .+0x0000000e

cmpl %eax, %edi If the value to store is an 
old object, jump after the 
store check.

jnz .+0x00000005

testb $0x20, %al

movzbl %ds:0x3(%edx), %eax
If the receiver is already in 
the remembered table, 
jump after the store check.

call .+0xfffff34f Calls the store check 
trampoline.

Perform the store in the 
first instance variable using 
the registers.

Load the value to store in 
another register.

Figure 5. Vanilla lambda store

not the case. This solution implied the creation of a sin-
gle new trampoline that calls the correct interpreter function
when the receiver is read-only to call in the language the
cannotAssign:withIndex: call-back.

Disassembly Meaning

movl %ds:(%edx), %eax

testl $0x00800000, %eax

jz .+0x0000000a

movl -12(%ebp), %edx

jmp .+0x00000024

If the receiver is writable, 
jump to the store.

Restore the receiver (to 
keep its register live) and 
jump after the store.

call .+0xfffff371 Calls the read-only failure 
trampoline.

Figure 6. Considered read-only check

This solution implied quite some overhead because the
machine code needed to take an extra branch on the com-
mon path and because many new machine instructions were
added per instance variable store.

Efficient read-only check. With the advises of Eliot Mi-
randa, I built a second solution, where a single per-store
trampoline is shared between the GC and the read-only write
barrier, as shown on Figure 7. As the instruction to call the
trampoline is the one that takes the more bytes, the general
idea was to avoid most of the overhead by having single call.

I created new trampolines that are able to deal with both the
case of the GC and the read-only write barrier. In this new
version, the machine code tests first if the object is read-only,
and if so, directly jumps to the shared trampoline.

New trampolines. For this implementation, I added new
trampolines. To be able to share the trampoline without
adding too many instructions, as the trampoline is rarely
taken, the trampoline duplicates the read-only check. The
normal execution flow checks if the object is read-only and
jumps to the trampoline if it is the case. In the trampoline, the
VM does not know any more if the trampoline was reached
for a read-only mutation failure or the GC write barrier.
Hence, the trampoline tests again if the object mutated is
read-only and calls the correct interpreter method to handle
either case.

Specialized trampolines for common indexes. In the case
of a read-only mutation failure, to perform the call-back, the
VM has to know what is the variable index of the object.
In the case of a lambda store, we said the instance variable
was the first instance variable, so in a 0-based array, the vari-
able index is 0. The problem is that to perform the call the
variable index needs to be passed as a parameter, requiring
extra machine instructions per-store. I decided to duplicate
the trampoline instead: a fixed number of trampolines based
on a VM setting are created, currently 6. This way, each of
the most common variable indexes (0 to 4) can call the corre-
sponding trampoline version specialized for the given index
(so it is not required to pass the variable index by parame-
ter in those common cases), and other variable indexes, less
common, call the generic trampoline passing by parameter
the variable index.

Register liveness. As the read-only failure trampoline cre-
ates a new stack frame for the cannotAssign:withIndex: call-
back, the registers cannot remain live across the trampoline.
I decided to keep the receiver live if it was already live by in-
jecting the corresponding machine code after the store if the
receiver was live before, as a live receiver is the most critical
for performance. Hence, only the receiver can remain live in
a register across the read-only write barrier trampoline call.

Debugging support. Without the write barrier, literal and
instance variable stores are not interrupt points. The debug-
ger cannot be opened at this program counter and processes
can’t switch on variable stores. With the write barrier, the
cannotAssign:withIndex: call-back can create new stack frame.
If one of the method called opens a debugger, the program-
mer needs to be able to debug the context with the canno-
tAssign:withIndex: call-back and the sender of this context. I
therefore needed to extend the machine code method meta-
data to be able to debug methods interrupted on stores.

Compilation. The write barrier was introduced as a com-
pilation setting in the Cog virtual machine. By design, two
choices were at hand, having the write barrier as a Slang
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Disassembly Meaning

movl -12(%ebp), %edx

popl %ecx

movl %ecx, %ds:0x8(%edx)

testb $0x03, %cl If the value to store is 
immediate, jump after the 
store check.jnz .+0x0000001e

If the receiver is a young 
object, jump after the store 
check.

movl $0x00040088, %eax

jb .+0x00000015

cmpl %eax, %edx

jnb .+0x00000011

cmpl %eax, %ecx If the value to store is an 
old object, jump after the 
store check.

jnz .+0x00000008

testb $0x20, %al

movzbl %ds:0x3(%edx), %eax
If the receiver is already in 
the remembered table, 
jump after the store check.

call .+0xfffff34f Calls the store check 
trampoline.

Perform the store in the 
first instance variable using 
the registers.

Load the receiver in %edx.

Load the value to store in 
another register.

movl -12(%ebp), %edx

movl %ds:(%edx), %eax

testl $0x00800000, %eax

jnz .+0x0000001e

If the receiver is read-only, 
jump to the store 
trampoline.

Restore the receiver (to 
keep its register live).

Figure 7. Production lambda store with the write barrier

to C compiler setting or as a C to machine code compiler
setting. I firstly made it as a Slang compiler setting, but it
was inconvenient as the build repository hierarchy needed to
be duplicated by two to support the write barrier in all the
builds. Eliot Miranda then changed the write barrier to be
a C compiler setting. The C compilation has now an extra
setting, the (misleading) -DIMMUTABILITY=1 flag, to compile
the VM with the write barrier.

6. Evaluation
I evaluate firstly the memory overhead of the feature, then
the execution time overhead.

6.1 Memory overhead
Object representation. As described in Section 3, the over-
head per object is a single bit. As all the objects need to be
64bits aligned in the spur memory manager and one bit had
already been reserved for the write barrier, in practice there
is no memory overhead at all.

Machine code memory footprint evaluation. The size of
the machine code representation of methods matters a lot in
the Cog VM. In fact, the VM keeps a very small executable
zone holding all the machine code versions of methods.

This zone is allocated at start-up depending on an in-image
setting, which is usually between 1 and 2 Mb, but can be any
value.

The size of the machine code matters because:

• When installing a new method, the VM needs to scan all
the machine code zone and flush all the caches related to
the new method selector. The machine code zone has to
have a limited size to avoid for this scan to be too long.

• Internally, the processor maps the frequently executed
machine code to the cpu instruction cache. Having a
limited machine code zone allows the cpu to have more
instruction cache hits and improve the VM performance.

• As machine code versions of methods directly refer to
objects (the literals are compiled inlined in the machine
code), the GC needs to scan the machine code zone to
know which objects are referenced. It has a cost as for
each machine code method it needs to read the metadata
associated to locate the object referenced, and to avoid
getting it too slow, the machine code zone has to be
limited.

• As the machine code zone has a fixed size, if the methods
are compiled in a smaller amount of machine code, the
VM can fit more methods in the machine code zone
before requiring a machine code zone garbage collection.

I evaluate the machine code size growth firstly globally, then
locally.

Machine code zone (globally). As shown on Figure 8, just
after start-up, the machine code zone occupied is 1.52%
bigger with the write barrier that without. The overhead is
there for multiple reasons:

• Each instance and literal variable store is compiled in
more machine instructions for the read-only write barrier.

• The at:put: primitives are compiled with more instruc-
tions.

• Additional trampolines are required at the beginning of
the machine code zone for the write barriers failure.

Machine code zone
size after start-up (hex)

Vanilla 91C00
Write Barrier 93F80

Figure 8. Machine code zone size

Locally: trampolines. When comparing the first available
address between the VM with and without the read-barrier,
one notices a difference of 400 bytes, which corresponds to
the size of the new trampolines (plus the size of the align-
ment Nops they require). Pharo normally uses a machine
code zone size of 1 or 2MB, hence the memory overhead
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is between 0.02 and 0.04% of the total machine code zone
size.

Locally: per-store overhead. In the case of a lambda store,
the most common, the store needs 12 extra bytes per store
to encode the extra machine instructions for the read-only
check. The overhead may vary slightly as the number of
Nops required for alignment between methods may change
if the number of bytes of the method changes.

Locally: at:put:. Each at:put: primitive is 16 bytes bigger
with the write barrier.

Comments. The main concern in our case is the number
of literal and instance variable stores. The number of tram-
polines is fixed during execution and there are at most two
at:put: primitives. Hence, only the number of stores can seri-
ously impact the memory foot print. As the global evaluation
shown, stores seems to be pretty rare as the overall memory
overhead is evaluated at 1.52%.

6.2 Execution time
Benchmarks. I evaluated the difference in performance
using the Games benchmarks [6] that is normally used for
VM performance evaluation. Even in benchmarks with in-
tensive instance variable stores, such as the binary tree
benchmark, the execution overhead was within the cpu noise
(so little that it could not be evaluated). I believe there is
some overhead in such benchmarks, but the overhead is un-
der 1% of execution time and I do not have an infrastructure
precise enough to measure it.

Building a pathological case. To see the performance dif-
ference, I built a micro-benchmark around a pathological
case doing almost only instance variable store.

MicroBench>>#setImmediate: imm nonImmediate: nonImm
"Immediate constant store"
iv1 := 1.
"Non Immediate constant store"
iv2 := #foo.
"Immediate store"
iv3 := imm.
"Non Immediate store"
iv4 := nonImm.

DoIt
| guineaPig |
guineaPig := MicroBench new.
[guineaPig setImmediate: 2 nonImmediate: #bar ] bench

Time to run pathological bench
Vanilla 11.5 ±3 nanoseconds per run

Write Barrier 13.6 ±2 nanoseconds per run

Figure 9. Pathological benchmark code and results

In this pathological case, as shown on Figure 9, one
notices a 18.2% performance overhead. However, the binary
tree benchmark, which was larger, calls extensively a similar
method (see Figure 10) and does not show any significant
overhead. It is therefore unclear if this result means anything
on real applications.

ShootoutTreeNode>>left: leftChild right: rightChild item: anItem
left := leftChild.
right := rightChild.
item := anItem.

Figure 10. Binary tree setter method

I profiled the pathological case and realized the perfor-
mance overhead was mostly due to the stack frame creation.
Indeed, instance variable stores do not require a stack frame
without the write barrier, but they do with the write barrier to
be able to perform the cannotAssign:withIndex: call-back. Dif-
ferent solutions are considered for this problem, as discussed
in the future work section.

7. Related work
Immutability. Other programming languages such as Ada,
C++, Java, Perl, Python, Javascript, Racket or Scala support
immutable objects. In those cases, an immutable object is an
object whose state cannot be modified after it is created. It
differs from our approach where at any time, the program
can mark or unmark an object as read-only. In the context
of Pharo where most features are reflexive, it seems the right
thing to allow an object to be able to change from immutable
to mutable state, and the other way around, using reflexive
APIs.

Garbage collector write barrier. Other people have im-
plemented write barriers in the machine code for efficient
garbage collection [8, 9]. In our approach, there is also have
a garbage collector write barrier and part of the machine
code is shared with the read-only write barrier.

High level modification tracker tools. The main use-case
of the write barrier is the implementation of object modifica-
tion trackers. Others implementation of objects modification
trackers are available. The most popular nowadays are the
ones made with the Reflectivity framework [5]. On the con-
trary to our approach where the overhead is close to zero,
the other approaches available have a significant overhead
as they need to execute additional bytecodes.

Other Smalltalks. Other Smalltalk dialects, such as Visu-
alWorks Smalltalk, have a similar features. In the case of
VisualWorks, as the VM is a pure-JIT VM (there is no in-
terpreter), the implementation does not require the canno-
tAssign:withIndex: call-back to return no value (the machine
code generated has a specific execution path to take care of
it).
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8. Future Work
I discuss in this section multiple performance improvement
and features that would be nice in the future release of the
Cog VM.

8.1 Performance improvement
Stack frame mapping and trampolines. While profiling
code in the VM to look for methods getting slower with
the write barrier, it was possible to see that one could op-
timize multiple trampolines in the JIT (related and unre-
lated to read-only objects). Indeed, trampolines such as can-
notAssign:withIndex: or mustBeBoolean are taken very rarely,
while their presence forces no register to be live across the
trampoline call due to the creation of a new stack frame for
Smalltalk to be able to handle the errors. It would be possi-
ble to convert stack frames triggering those trampolines from
machine code frame to bytecode interpreter frames. This
way, each time one of those trampolines is taken, the exe-
cution would fall back on the bytecode interpreter to resume
the method and all registers will be able to be live across the
trampoline call.

Stack frame creation for setter. As discussed in Section
6.2, the main remaining slow-down in the current implemen-
tation lies with setter methods, i.e., methods only setting the
value of one or multiple instance variables. It is possible to
change the JIT to generate two paths for such methods. The
method would start by testing if the receiver is read-only or
not, if it is not the case, which is the most common, a quick
path without stack frame creation nor read-only checks can
be taken instead of the slow path with stack frame creation
and read-only checks.

8.2 Features
Read-only contexts. For simplicity, I enforced all contexts
to be writable. It would be interesting to allow context to
be read-only. In this case, the VM would not be able to
execute the method (method execution includes at least the
mutation of the program counter of the context), and the
execution would need to fall-back to a user-defined in-image
interpreter.

Modification tracker. One of the main use-cases of the
write barrier is to track object modifications. To do so, one
has to implement an in-image framework on top of the write
barrier APIs proposed in this paper. The framework has to
correctly handled store failures of both primitives such as
at:put and instance variable store.

In-image primitive fall-back. As stated in Section 4.2, all
the primitive methods mutating an object need to have their
fall-back code updated to raise the correct error. If such
primitives fail because of a read-only object, the primitive
failure error should be appropriate and not an unrelated error.
This has still to be done.

9. Conclusion
In this paper I have described the implementation of the
write barrier in the Cog VM and the Pharo image. Accord-
ing to the multiple evaluations, the feature was introduced
with little to no overhead in term of memory footprint and
execution time in most applications.

Although the overhead is minimal, very uncommon
pathological cases still show an execution time overhead
of up to 18.2%. I believe the pathological cases overhead
could be solved by compiling two paths for setter methods
and by falling back to bytecode interpretation on uncommon
machine code paths. Hopefully, once polished over months
of production and customer feed-back, the write barrier will
induce a negligible overhead even in uncommon cases.
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