ViennaTalk and Assertch: Building Lightweight
Formal Methods Environments on Pharo 4

Tomohiro Oda

Software Research Associates, Inc.
tomohiro@sra.co.jp

Abstract

It is possible to make Integrated Development Environments sup-
porting formal methods that can be as flexible as the support for
dynamic programming languages. This paper contributes with
a demonstration employing different support environments for
the Vienna Development Method Specification Language (VDM-
SL) and design by contract for visual programming language.
This includes ViennaTalk developed on top of Pharo 4 providing
Smalltalk-styled LIVE browsers, VDM-SL interpreters, Smalltalk
code generators, UI prototyping environments and a prototype Web
API server to enable rigorous and flexible modeling during ex-
ploratory phases of software development. ViennaTalk uses the
Slot mechanism in Pharo to test invariant assertions on instance
variables in Smalltalk objects generated from VDM-SL specifica-
tions. In addition, we present a plugin named Assertch for Phratch,
a scratch-clone visual programming environment on top of Pharo 4,
that provides assertion blocks for designing and debugging a series
of blocks.

Both ViennaTalk and Assertch combine flexible live modeling
or coding while still supporting rigorous checking. ViennaTalk has
been evaluated by experienced professional engineers of VDM-SL
while Assertch has been evaluated by undergraduate students of
computer science. ViennaTalk and Assertch both demonstrate that
Pharo and its contemporary features support rigorous modeling in
formal specification languages as well as flexible prototyping in
Smalltalk.

Keywords Live environment, Lightweight formal methods, Spec-
ification animation, Validation

1. Introduction

Capturing user requirements and validating them by exploratory
modeling techniques such as prototyping is a very successful
method in software development. Smalltalk is a leading environ-
ment for quickly prototyping in a live fashion.

The lightweight use of formal methods has been proposed quite
some time ago as a cost-effective way to promote industrial usage
[1, 4]. The Vienna Development Method (VDM) [3] contains dif-
ferent specification language dialects known to support lightweight
formal methods. In this paper we will concentrate on the VDM

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

IWST 16 August 23, 2016, Prague, Czech Republic

Copyright (© 2016 held by owner/author(s). Publication rights licensed to ACM.

ACM 978-1-nnnn-nnnn-n/yy/mm. .. $15.00

DOI: http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Keijiro Araki

Kyushu University
araki@csce.kyushu-u.ac.jp

Peter Gorm Larsen

Aarhus University
pgl@eng.au.dk

PetitParser g

1
NeoJSON |~
[osocess 4
VDMPad

ViennaTalk

Figure 1. Packages and dependencies in ViennaTalk

Specification Language (VDM-SL) which is an ISO standard [6].
VDM-SL is a formal specification language that has an executable
subset, yet provides strong abstraction by powerful constructs with
mathematical foundations. Many successful cases of practical ap-
plication of VDM to large scale software systems are reported [14].

Existing tools for VDM-SL include type checkers, proof obli-
gation generators, interpreters and code generators. IDEs such as
VDMTools [4, 5] and Overture tool [7] integrate such tools, and
are used in industrial software development, including but not lim-
ited to high assurance systems. The formal specification phase is
not only to mathematically prove safety properties of the specifica-
tion, but also to learn the target domain and elicit implicit require-
ments from clients and domain experts. A process of trial and error
is often carried out in the early stages of the specification phase.

We developed ViennaTalk, a formal specification environment
on top of Pharo 4, to introduce Pharo’s flexible and live way of
modeling. We also implemented Assertch, a plug-in for the vi-
sual programming environment Phratch!, that introduces assertion
blocks. In this paper, an overview of ViennaTalk and Assertch is
provided in Sections 2 and 3. Components of ViennaTalk, such
as browsers, interpreters, code generators, UI prototyping environ-
ments, and a prototype web API server, are explained and dis-
cussed.

2. ViennaTalk

ViennaTalk is a formal modeling environment for VDM-SL built
upon Pharo 4.

Pharo is an Integrated Development Environment (IDE) where
developers of the IDE and application developers use the same en-
vironment. Modification to Pharo is open to any application pro-
grammer. ViennaTalk shares the same design rationale. ViennaTalk
is not a standalone IDE but serves as a part of the Pharo environ-
ment.

Uhttp://www.phratch.com/

ViennaTalk consists of the execution, IDEs and other utility
packages. Figure 1 shows ViennaTalk’s packages and their depen-
dencies. The Engine package provides interpreters implemented as
wrappers to external interpreters. The Type and Value packages
provide types and values of the VDM-SL language as Smalltalk
objects. The VDMC package manages states of animation sessions
and translation between VDM-SL values and Smalltalk objects. Vi-
ennaTalk also has the Parser package including abstract syntax tree,
pretty printers, a syntax highlighter and code generators.

ViennaTalk provides four development environments on top of
the Pharo environment. The core also includes the VDM Browser
as a Ul to edit and evaluate the source code of VDM-SL. Develop-
ers can extend or implement a tool specialised to a particular devel-
opment project. The full configuration of ViennaTalk includes tools
such as VDMPad, Lively Walk-Through and Webly Walk-Through.

In this section, a brief overview of VDM-SL is presented.
Browsers for VDM-SL, animation mechanisms, and prototyping
environments are described afterwards.

2.1 Overview of VDM-SL

VDM-SL is a model-oriented formal notation based on discrete
mathematics and logic that supports the description of both data
and functionality. Although VDM-SL is not a programming lan-
guage, it has a subset so that interpreters can simulate execution of
the specified system [8]; simulated execution is called animation.
An animation of the specification consists of a series of evaluations
of expressions. In this paper, we only use the executable subset of
VDM-SL.

A specification in VDM-SL has one or more modules. Each
module defines types, constant values, functions, a state space and
operations. Data are defined by means of types built using construc-
tors that define structured data with records and tuples and collec-
tions such as sets, sequences and mappings from basic values such
as Booleans and numbers. Constants and functions are referentially
transparent, and operations may or may not read and/or change val-
ues of state variables defined in the state space. Each function or
operation may have a precondition and a postcondition. A precon-
dition constrains the state and arguments before its evaluation, and
a postcondition constrains the state and arguments after the evalu-
ation. The state space in each module may have an invariant that
the state should always satisfy. A type may also have invariant that
all values of the type should satisfy. If evaluation of an expression
violates either invariants, preconditions or postconditions, the in-
terpreter reports the violation and stops the animation.

VDM-SL has a powerful pattern matching mechanism includ-
ing set unions, sequence concatenation and map unions. For exam-
ple, a pattern header ~ [1, 2, 3] trailer matches to
[0, 1, 2, 3, 4, 5] with binding that header = [0] and
trailer = 1[4, 5] wherethe ~ operator is sequence concatena-
tion. VDM-SL also provides rich and powerful operators on maps,
such as composition and restriction to the domain and the range
of a map. Those features are useful for mathematical modeling.
Although those features are executable, the objective of VDM-SL
specification is to describe properties that the target system should
satisfy.

2.2 Browsers in ViennaTalk

ViennaTalk provides two live browsers for VDM-SL inspired by
the Smalltalk environment. One is a web-based IDE named VDM-
Pad, the other is VDM Browser on Pharo’s desktop. VDMPad is
designed to be easy to use with small scale specifications that can
be expressed in a single module. The VDM Browser targets small
to medium scale specifications with multiple modules.

Both browsers are live; when a specification is executed, the
user can modify the specification and the animation continues with

the modified specification. Conventional animation tools do not
allow the user to modify the values of the state variables. An
animation always starts with the initial state, and modification to
the specification forces the animation to restart with the initial state.
ViennaTalk gives more freedom to the user; the user can change
the values of the state variables, can modify the specification, and
continue the animation by evaluating the next expression. If the
state violates the specification by evaluation of an expression, the
state before the evaluation will be kept. If the state violates the
specification by modification of the specification, the state will be
initialised.

2.2.1 VDMPad

VDMPad [9, 10] is a simple Web IDE for the formal specification
language VDM-SL designed to support exploratory stages of mod-
eling. A VDMPad server provides a VDM animation service to web
clients for VDM-SL?. It is designed to supply lightweight, easy-
to-use functionality comparable to a calculator in an engineer’s
pocket. VDMPad has two areas of intended use: formal methods
education and exploratory development. VDMPad can also be used
as a VDM-SL interpreter server for ViennaTalk installed on remote
hosts.

One benefit of programming on a web browser is convenience.
Downloading, installing and updating an IDE, along with libraries
that the IDE depends on, can be a burden for beginners. VDMPad
does not require any special plugin on the client side. Having a
VDMServer running on the Internet, a prospective VDM learner
can give it a try just by opening a browser and entering the URL
at a classroom or a development site. Because the VDM interpreter
runs on the server side, the client side is lightweight.

All operations to animate a VDM-SL specification on VDMPad
are performed via the one, simple page. Figure 2 shows the major
UI components of VDMPad. The user interface consists of five
parts: a specification editor, an area for information about the state,
a workspace, a return value display, and finally a message area. In
addition, a retractable menu pane is provided.

The specification editor has a syntax highlighting feature to
help the user see the structure of the specification. The user does
not have to save the specification to animate it. Evaluating an
expression in the workspace will send the specification to the server
to animate it, and the specification will be saved on the local
storage in the browser automatically along with the content of the
workspace and other information about the status of the animation.

VDMPad displays the value of each of the state variables in
the state area. The value of each variable is printed in an input
field so that the user can edit the value. VDMPad can optionally
display a diagram representation of the value of each state variable
for intuitive understanding of the structure of the value.

The workspace is a text editor named after its counterpart in the
Smalltalk environment. The main purpose of the workspace is to
enter and organise a collection of expressions for evaluation, but
the user can also write notes inside this area. The user can evalu-
ate such an expression by selecting it on the workspace and click-
ing the evaluate button (See Figure 2). The return value of the
expression is displayed below the evaluate button. The return
value can also be displayed in a diagram representation. If evalu-
ation generates a run-time error, the error message is displayed in
the message area at the bottom of the window.

2.2.2 VDM Browser

Figure 3 shows VDM Browser. Like Smalltalk’s class browsers,
VDM Browser styles syntax by colours and also pretty prints the

2 A similar web-based IDE can be found in [12].

powered by Squeak Smallialk with VDMI
VDMPad

types
pr\ayer= <03
Computer = <X>;
Position :: row : nat1 column : nat1
inv mk_Position(r, €) == rinset {1, ..., l)and cinset{l,.., 3%
Board = map Pasitien to (Playerl Computer);
Status iz
<WonByPlayer>l <WonByComputers| <Draw>| <Playing>| <Invalid> Board;

values
player = <0>;
computer = <X>;
allPositions =
{mk_Position(row, column) | row, column in set {1, ..., 2}};
magic : inmap Pesition to nat] =
{mk_Pasition(T, 1) I-= 2, mk_Position(1, 2) I-> 7,

mk_Position(1, > 6, mk_Position(2, 1) |-> 9,
mk_Position(2, 2) I-> 5, mk_Position(2, 3) I-> 1,
mk_Position(3, 1) I-> 4, mk_Position(3, 2) |->
mk_Position(3, 3) I-> 8}
victory = 15;
function
Format
DEFAULT
board {mk_Position(1, 1} |-> <O>, mk_Position(1, 2) |-» <X>, mk_Positien(2, 2)
-> <0, mk_Position(3, 3) |-> <X>} y
Position Position Position Position
1 1 2 3
1 2 2 3
0 X 0 X |

Initialize

pEta

evaluate

make it a testease

mk_Status{<Playing>, {mk_Position(1, 1) |-> <O>, mk_Positian(1, 2) |-> <X>, mk_Position(2, 2} |-> <O>,
mk_Position(3, 3) |-> <X>})

Status

Playing |
Position ~ Position Position Position
1 1 2 3
1 2 2 3
o [E: llo [E: |

Figure 2. A screenshot of VDMPad

source either automatically or by an explicit command in the con-
text menu.

The VDM Browser has two roles; a source editor and an in-
spector on an animation context of the specification. The upper left
pane is the module list where the modules defined in the specifica-
tion are listed. By selecting a module in the module list, the user can
choose the module to edit the source and to evaluate an expression.
The upper middle pane is the variable list where the state variables
of the selected module are displayed (or for the entire system if no
module is selected). The upper right pane is the value pane where
the value of the selected state variable is displayed. The user can
also enter an expression in the value pane and assign it to the state
variable.

VDM Browser has a workspace. The workspace appears by se-
lecting the Workspace tab. Figure 4 shows a workspace after eval-
uating the expression getGoal (). The return value of the evalu-
ated expression is inserted and selected (9000). An expression is
evaluated in the scope of the selected module in the module list.

2.3 Animation Mechanisms
2.3.1 Interpreters

ViennaTalk uses VDMJ, a VDM interpreter in Java, as an exter-
nal interpreter [2]. ViennaTalk provides three kinds of wrappers
to use VDM interpreters: ViennaVDMJ, ViennaClient and Vienna-

*x — 0 VDM Browser i
User days 96Aa
Controller goal
Sensor rate
Display
module list variable list value pane

Specification Workspace

module User
exports all
definitions
values
goallnit = 1
goalMax
goalMin

state State of
goal & natl
rate : real
days : nat

init s == s = mk_State(1@800, 1.0, 0)
end p—
specification pane
Figure 3. A screenshot of the VDM Browser

x — 0O VDM Browser -
User days 95000
Controller goal
Sensor rate
Display

module list variable list value pane
Specification Workspace
incGoal()
decGoal()
getGoal() 9668

workspace

Figure 4. A screenshot of Workspace in VDMBrowser

BankEngine. ViennaVDMIJ uses VDMJ® to evaluate an expression
via OSProcess*. ViennaClient is a wrapper that uses VDMPad/Vi-
ennaTalk server via HTTP. ViennaBankEngine is a pool of wrap-
pers to distribute computational loads over the wrapper pool. All

3 https://github.com/nickbattle/vdmj
4 http://www.squeaksource.com/OSProcess.html

operations
sieve : natl ==> ()
sieve (x) ==
space := [space (i)

| i in set inds space
& space (i) mod x <> 0];

Figure 5. A part of Sieve of Eratosthenes in VDM-SL

sieve: x

space := ((l1 to: space size)
select: [:1 | (space value: i) \\ x "= 0]
thenCollect: [:1i | space value: i])

asOrderedCollection

Figure 6. The sieve Smalltalk method generated from the VDM-
SL specification in Figure 5

those wrappers respond to the #evaluate:specification:states: mes-
sage.

The wrappers are sessionless, which means that a wrapper does
not store any state information about an animation; a wrapper can
be used by multiple animations and an animation can be carried out
by different wrappers for each evaluation of an expression.

2.3.2 Code Generators

ViennaTalk also has three kinds of Smalltalk code generators.
ViennaVDM2Smalltalk generates a string that can be evaluated
by Smalltalk compilers. ViennaVDM2SmalltalkClass generates
a class for each module in the VDM-SL specification. Vien-
naVDM2SmalltalkObject generates an anonymous class for each
module in the VDM-SL specification and creates its instance.

The generated code uses standard Smalltalk classes if possible.
For example, characters in VDM-SL are translated into objects of
the Character class in the standard class library. A set {1, 2, 3,
4} in a VDM-SL specification is translated into {1. 2. 3. 4}
asSet.

One goal of the ViennaTalk’s code generators is to output
human-readable and natural Smalltalk programs. The following
specification is a snippet from an executable specification of Sieve
of Eratosthenes to compute a series of prime numbers.

ViennaTalk defines classes for values and types of VDM-SL.
VDM-SL and Smalltalk have different type systems. VDM-SL
is statically typed, and Smalltalk is dynamically typed. Smalltalk
has multiple concrete classes for integers: SmallInteger,
LargePositivelInteger, and LargeNegativeInteger
in Pharo 4. VDM-SL also has multiple types for integer and its
subtypes: int, nat, and nat1. It is not straightforward to define
a mapping between Smalltalk classes and VDM-SL types.

ViennaTalk provides classes to express VDM-SL types inde-
pendent of the classes of instance objects translated from VDM-
SL values. VDM-SL types are instances of subclasses of the Vien-
naType class and VDM-SL values are instances of standard classes
such as Integer, Float, Array and so on. The instance objects trans-
lated from VDM-SL values are loosely associated with VDM-SL
type objects by the #includes: message. An instance of the Vi-
ennaType class responds to the #includes: message and an-
swers whether the object given as the argument belongs to the re-
ceiver’s type. For example, a Smalllnteger object 1 is translated
from VDM-SL’s value 1, and the expression ViennaType nat
includes: 1 evaluatesto true.

ece G Pharos 0.mage
x-o Lively Walk-Through

fixpositon

name

<o> »
> »

.
e
e
e
.
e
| e
»
a
atus” assigne
<x: Start" clicked
_omrur reset()
‘add mapping " -> [Status]

mk_Status(<Playing>, *

Figure 7. A screenshot of Lively Walk-Through

Those type objects also respond to the >= message to answer the
subtype relationship in VDM-SL'’s type system. Table 1 shows the
mapping between VDM-SL types and their type objects and value
objects in Smalltalk. Those classes for VDM-SL types and values
are not only for code generators but they can be used to implement
other tools to manipulate VDM-SL specifications.

ViennaTalk uses the Slot mechanism [13] to implement invari-
ant checking on instance variables. The Slot mechanism enables ap-
plication programmers to define models of instance variables with-
out customizing the compiler. A Slot defines a series of bytecodes
that the compiler should generate for read access to the variables,
and another series for write access. A class can be defined option-
ally with pairs of an instance variable name and a slot. When the
compiler generates bytecodes of read or write access to an instance
variable in a mehtod, the compiler delegates the bytecode genera-
tion task to the corresponding slot. A slot may also have methods to
process read and/or write access to an instance variable of an object
in addition to bytecodes.

ViennaTalk provides ViennaStateSlot that sends a #inv mes-
sage to an object when an instance variable of the object is as-
signed a value. The #inv method tests the invariant. If the invari-
ant evaluates to false, ViennaStateInvariantViolation will be sig-
nalled. The code generator generates the #inv method from the
state space definition and uses ViennaStateSlot for each state vari-
able when the code generator defines a class for a VDM-SL mod-
ule. ViennaStateSlot enables the state invariant to be checked in the
Smalltalk system, and helps Smalltalk programmers to detect an
unexpected object assigned to an instance variable.

2.4 Prototyping Environments

ViennaTalk includes two prototyping environments, Lively Walk-
Through [11] and Webly Walk-Through [11].

Lively Walk-Through is a Ul prototyping environment that
combines a formal specification in VDM-SL and prototypical Ul
design. Stakeholders can use the prototype to check whether the
specification in VDM-SL satisfies the requirements by operating
the specified system through the user interface. Figure 7 shows a
prototype of the Tic-Tac-Toe game on Lively Walk-Through. The
left part is the prototypical user interface. In Figure 7, an image of
3x3 board, two stone widgets (O and X), a start button, and a status
display are placed. The right part has tabs of a widget catalog, a
VDM Browser, a LiveTalk browser where the Ul events are asso-
ciated with VDM expressions and data flow to widgets, settings
menu, and file menu. The user can modify the specification and the
state using VDM Browser when operating on the prototypical user
interface.

Type description VDM type Smalltalk expression Implementation class Value’s class
natural number nat ViennaType nat ViennaNatType Integer
non-zero natural number | natl ViennaType natl ViennaNat1Type Integer
integer int ViennaType int ViennalntType Integer
real number real ViennaType real ViennaReal Type Float
boolean bool ViennaType bool ViennaBoolType Boolean
quote <quote> ViennaType quote: #quote ViennaQuoteType Symbol
option type [7] t optional ViennaOptionType r’s class or
UndefinedObject

product type tl * 12 tl * 12 ViennaProductType Array
union type tl |2 tl |2 ViennaUnionType t1 or 12’s class
set type set of ¢ t set ViennaSetType Set
seq type seqof ¢ 1 seq ViennaSeqType OrderedCollection
non-empty seq type seql of ¢ t seql ViennaSeqlType OrderedCollection
map type map t] to 12 tI mapTo: 12 ViennaMapType Dictionary
injective map type inmap t/ to 12 ¢! inmapTo: £2 ViennalnmapType Dictionary
partial function type tl —> 12 tl —> 12 ViennaPartialFunctionType BlockClosure
total function type tl +> 12 tl+> 12 ViennaTotalFunctionType BlockClosure
composite(record) type compose ¢ of ViennaType compose: 't of: ViennaCompositeType ViennaComposite

fl:tl {f1 . false . t1.

22 {f2 . true . 12}.

13 end {nil . false . 13}}
type invariant t inv pattern | tinv: [:v | expr] ViennaConstrainedType t’s class

==expr

Table 1. VDM-SL types and corresponding Smalltalk expressions, type classes and value classes

Webly Walk-Through is a web API server that publishes oper-
ations defined in a VDM-SL specification as web APIs. Used in
conjunction with HTML and JavaScript, Webly Walk-Through can
be used as a prototyping tool for web applications. Web APIs on
Webly Walk-Through exchange data in JSON format.

2.5 Discussion and Related Work

‘We have built a formal methods environment named ViennaTalk on
top of Pharo 4. The development of ViennaTalk demonstrated that
a live environment as an extremely dynamic environment benefits
development environments for languages oriented to static analysis.

VDMTools [4, 5] and the Overture tool [7] are two major IDEs
for VDM family practically used in industries. Both VDMTools
and Overture tool aims at rigorous large scaled development; they
provide syntax and type checking, interpreters and code generators
for large specifications modularised and stored in directory trees.
Interpreters provided by VDMTools and Overture tool are not live;
an animation session restart with the initial state when the speci-
fication is modified. ViennaTalk’s live animation makes the initial
stage of the modeling process more flexible and more efficient by
allowing animation and modification interleaved with each other.

The code generators of VDMTools and Overture require exter-
nal development tools for the target language such as compilers and
linkers. ViennaTalk can generate Smalltalk objects directly from a
VDM-SL source and run it instantly. ViennaTalk can also generate
a class library. Having a class library generated from a VDM-SL
source, the user can browse classes and methods to gradually and
seamlessly integrate the code with other components of the Pharo
environment in the live way.

A prototype WebIDE for Overture tool has been developed
[12]. ViennaTalk provides a web-based IDE named VDMPad as
described in Section 2.2.1. Two web IDEs share the same strengths,
in both industrial and educational settings, that the tools can be
delivered and updated by the central controlling manner. They have
different orientation inherited from their base environment: the
Eclipse-based Overture tool and the Smalltalk-based ViennaTalk.
Overture’s WebIDE has a file-based user interface based on the

Eclipse-based standalone Overture tool, and provides functionality
using components of the Overture tool. VDMPad has an image-
based user interface which does not employ the concept of files
except importing/exporting snapshots from/to local file systems.
Both ViennaTalk and VDMPad are designed as personal modeling
environments for exploratory modelling tasks while Overture and
its WebIDE pursuit rigorous modeling in either personal or team-
based developments.

ViennaTalk does not only use Pharo’s class libraries, but also
adopted liveness and UI design inspired by Pharo. We received
positive feedback from the experts. They commented that the
workspace is convenient in trial-and-error to understand the sys-
tem’s behaviour. We also asked expert VDM-SL engineers to use
Lively Walk-Through in hackathon sessions. They commented that
the UI prototyping is a good tool to capture the requirements. We
believe the liveness and the exploratory modeling approach sup-
ported by ViennaTalk can be accepted by formal engineers. We
have been providing a public VDMPad server at:
http://vdmpad.csce.kyushu-u.ac. jp and invited ex-
pert VDM-SL engineers from industry for evaluation.

Smalltalk programmers can also enjoy benefits of lightweight
formal methods. The invariant checking mechanism implemented
in ViennaTalk can help Smalltalk programmers. Use of the Slot
mechanism like ViennaStateSlot gives confidence that an object
maintains data integrity. ViennaStateSlot sends a #inv message
when an instance variable is overwritten. The # inv method checks
the sanity of the receiver object. The #inv method can serve as
debug code as well as design documentation that describes the
assumed constraints of the object.

3. Assertch

Assertch is a plug-in extension to Phratch®, a live and visual pro-
gramming environment on Pharo 4.

The objective of Assertch is to introduce formal methods to
undergraduate computer science students. Assertch provides four

5 http://www.phratch.com/

Figure 8. An example program using Assertch’s assertion blocks

kinds of assertion blocks, an error reset block and operator blocks
for convenience to write assertions. Using assertion blocks, stu-
dents learn design by contracts including the concept of assertions,
how to specify a code block, how to implement the code block
to satisfy the specification, how to explain the implemented code
block using assertions, how to debug the code using assertions and
how to comprehend the code using assertions.

Figure 8 is an example program using assertion blocks. The
black blocks are assertion blocks. The outer black block is a post-
condition block, and the two inner black blocks assert both pre-
condition and postcondition. Those assertion blocks are used for
runtime checking and as design documentation.

For example, we can explain why the program in Figure 8
works. As the outmost postcondition block says, the goal of the
program is to make a less than or equal to b. If a is greater than
b, we have a precondition a > b and a postcondition a <= b.
Swapping a and b will obviously satisfy the postcondition. If a is
not greater than b, we have a precondition a <= b and a postcon-
dition a <= Db. Because the precondition and the postcondition are
identical, nothing is needed. Therefore, in either case the program
satisfies the postcondition a <= b.

3.1 Evaluation

Three undergraduate students majoring computer science used As-
sertch for simple programming tasks. All of the three students
were new to Phratch or Scratch-based visual programming environ-
ments. The students received a 10 minute brief lecture on how to
use the visual programming environment and assertion blocks. The
students performed two programming tasks using assertion blocks
and then they were interviewed individually. In the interview, stu-
dents explained their programs using preconditions and postcondi-
tions. All of them responded that they understood the functionality
of assertion blocks and that they consider assertion blocks useful
to correctly construct a program and to explain the program. They
also answered that they consider assertions useful in textual pro-
gramming languages.

4. Concluding Remarks

ViennaTalk and Assertch are built upon the Pharo environment. We
believe that building lightweight formal tools upon dynamic envi-
ronment can be of mutual benefit. Smalltalk’s flexibility and live-
ness help exploratory formal specification, and partial use of for-
mal specification in Smalltalk development gains confidence in the
model for little slow-down of Smalltalk’s rapid programming. One

significant aspect is Slot. Slot is one of the contemporary features
in Pharo that allows the flexibility to change semantics of instance
variables. ViennaTalk uses the Slot mechanism to implement state
invariants on instance variables. It demonstrates that Pharo’s flexi-
bility helps implementation of lightweight formal tools that aid rig-
orous construction of program code. We continue developing Vi-
ennaTalk to pursue rigorous and flexible modeling for efficient and
reliable software development.

Acknowledgments

This work is supported by Grant-in-Aid for Scientific Research (S)
24220001 and Grant-in-Aid for Scientific Research (C) 26330099.
We would also like to thank Nick Battle and Paul Chisholm for
valuable feedback on drafts of this paper.

References

[1] S. Agerholm and P. G. Larsen. A Lightweight Approach to Formal
Methods. In Proceedings of the International Workshop on Current
Trends in Applied Formal Methods, Boppard, Germany, October 1998.
Springer-Verlag.

[2] N. Battle. VDMIJ User Guide. Technical report, Fujitsu Services Ltd.,
UK, 2009.

[3] J. Fitzgerald and P. G. Larsen. Modelling Systems — Practical Tools
and Techniques in Software Development. Cambridge University
Press, The Edinburgh Building, Cambridge CB2 2RU, UK, 1998. doi:
10.1145/1668862.1668879. ISBN 0-521-62348-0.

[4] J. Fitzgerald, P. G. Larsen, and S. Sahara. VDMTools: Advances in
Support for Formal Modeling in VDM. ACM Sigplan Notices, 43(2):
3-11, February 2008. doi: 10.1145/1361213.1361214.

[5] P. G. Larsen. Ten Years of Historical Development: “Bootstrapping”
VDMTools. Journal of Universal Computer Science, 7(8):692-709,
2001.

[6] P. G. Larsen, B. S. Hansen, et al. Information technology — Program-
ming languages, their environments and system software interfaces —
Vienna Development Method — Specification Language — Part 1: Base
language, December 1996. International Standard ISO/IEC 13817-1.

P. G. Larsen, N. Battle, M. Ferreira, J. Fitzgerald, K. Lausdahl, and
M. Verhoef. The Overture Initiative — Integrating Tools for VDM.
SIGSOFT Softw. Eng. Notes, 35(1):1-6, January 2010. ISSN 0163-
5948. doi: 10.1145/1668862.1668864. URL http://doi.acm.
0org/10.1145/1668862.1668864.

K. Lausdahl, P. G. Larsen, and N. Battle. A Deterministic Interpreter
Simulating A Distributed real time system using VDM. In S. Qin and
Z. Qiu, editors, Proceedings of the 13th international conference on
Formal methods and software engineering, volume 6991 of Lecture
Notes in Computer Science, pages 179194, Berlin, Heidelberg, Oc-
tober 2011. Springer-Verlag. doi: 10.1007/978-3-642-24559-6_14.
URL http://dl.acm.org/citation.cfm?id=2075089.
2075107. ISBN 978-3-642-24558-9.

[9] T. Oda and K. Araki. Overview of VDMPad: An Interactive Tool
for Formal Specification with VDM. In International Conference on
Advanced Software Engineering and Information Systems (ICASEIS)
2013, Nov 2013.

[10] T. Oda, K. Araki, and P. G. Larsen. VDMPad: a Lightweight IDE for
Exploratory VDM-SL Specification. In N. Plat and S. Gnesi, editors,
FormaliSE 2015, pages 33-39, Florence, May 2015. In connection
with ICSE 2015.

[11] T. Oda, Y. Yamomoto, K. Nakakoji, K. Araki, and P. G. Larsen.
VDM Animation for a Wider Range of Stakeholders. In F. Ishikawa
and P. G. Larsen, editors, Proceedings of the 13th Overture
Workshop, pages 18-32, National Institute of Informatics, 2-1-2
Hitotsubashi, Chiyoda-Ku, Tokyo, Japan, June 2015. Center for
Global Research in Advanced Software Science and Engineering.
URL http://grace-center. jp/wp-content/uploads/
2012/05/13thOverture-Proceedings.pdf. GRACE-TR-
2015-06.

[7

—

[8

=

[12] R. S. Reimer and K. D. Saaby. An Open-Source Web IDE for VDM-
SL. Master’s thesis, Department of Engineering, Aarhus University,
Denmark, May 2016.

[13] T. Verwaest, C. Bruni, M. Lungu, and O. Nierstrasz. Flexible object
layouts: Enabling lightweight language extensions by intercepting slot
access. In Proceedings of the 2011 ACM International Conference on
Object Oriented Programming Systems Languages and Applications,
OOPSLA ’11, pages 959-972, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0940-0. doi: 10.1145/2048066.2048138. URL
http://doi.acm.org/10.1145/2048066.2048138.

[14] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal
Methods: Practice and Experience. ACM Computing Surveys, 41(4):
1-36, October 2009. ISSN 0360-0300. doi: http://doi.acm.org/10.
1145/1592434.1592436.

