Submitted toIWST 2016

Mocks, Proxies, and Transpilation as
Development Strategies for Web Development

Noury Bouraqadi

Mines Douai, France
noury.bouragadi@mines-douai.fr

Abstract

With the advent of HTML 5, we can now develop rich
web apps that rival classical standalone apps. This richness
together with the portability of web technologies, turned
HTML 5 into a viable (and in the case of mobile - essen-
tial) solution to develop cross-platform apps. This possibil-
ity is heavily dependent on Javascript having acceptable per-
formance, good testability, and a modern development en-
vironment. Despite its extensive use in creating highly in-
teractive environments, most Javascript development envi-
ronments currently use a compile/run paradigm. Similarlily,
testing is frequently tacked on, rather than being an inte-
grated part of the development cycle. We propose PharoJS
which leverages the Smalltalk IDE with a seamless transition
from native Smalltalk tests, through proxied browser tests, to
full browser-resident tests. We support the standard event-
driven browser model and transpile Smalltalk code into effi-
cient Javascript for execution in the browser. We further sup-
port testing - both manually and automatically - in a range of
browsers to provide assured consistency upon deployment.
In addition to transpiling the Smalltalk code to Javascript to
perform tests in the browser, we can also run non-interactive
tests within the Smalltalk environment. The unique feature
we provide is the ability to run interactive tests largely within
the Smalltalk IDE, so as to fully exploit the debugging and
development environment, while the actual interaction oc-
curs on the browser. We exhibit this new mode of develop-
ment via a simple application.

1. Introduction

Javascript is one of the most ubiquitous languages in today’s
computing world. It is used for many applications rang-
ing from web client side, through server side, to standalone

[Copyright notice will appear here once *preprint’ option is removed.]

Smalltalk/Javascript interop via proxies

Dave Mason

Ryerson University, Canada
dmason@ryerson.ca

apps on the web, on handheld devices based on infrastruc-
tures such as PhoneGap, or on the desktop based on infras-
tructures such as appjs, Electron, NW.js(Milani and Benvie;
GitHub; Community). Although there have been many sys-
tems designed and sold to generate Javascript, only Web-
Storm(JetBrains) comes close to providing the kind of pow-
erful development and execution environment afforded by a
modern Smalltalk envionment such as Pharo.

We have produced an environment that runs within Pharo
Smalltalk and allows the programmer to build an applica-
tion using the tools available in that environment through
a structured development process. Firstly, developing algo-
rithms and tests using dummy objects for user interface.
Then, running and debugging the application while using
any web browser as the user interface via transparent prox-
ies. Finally, when the application is tested and running, a
standalone Javascript application can be extracted from the
tested Smalltalk classes and deployed on the web or in a mo-
bile device.

This paper is about language/run-time interoperability for
web (Javascript) development using a host-based develop-
ment environment. We describe this using Pharo as the host
environment and Smalltalk as the development language, but
the principles are not language or IDE specific.

The contributions of the paper include:

1. A development methodology for web applications that
supports testing of true, browser-based semantics within
a powerful IDE - for all the browsers targeted by the
developer.

2. The use of proxy objects to access browser-based objects
and semantics from the host language during develop-
ment.

3. The use of reverse-proxy objects to access host code from
browser-based events and libraries during development.

4. A seamless transition from the development environment
to fully browser-based code for final testing and deploy-
ment.

In §2 we describe the problem that motivated this re-
search, by evaluating the state of the art of Javascript-

2016/5/22

based web application development. We show that the com-
munity is missing a powerful IDE for web development.
§3 give an overview of the contributions of this paper. It
presents our test-driven development process, and how to
evolve a Smalltalk app running entirely within Pharo, into a
Javascript one running entirely within a web browser. A de-
tailled description of the proposed solution is then provided
by the three following sections. We show how we rely on
mocks for native Pharo testing in §4. Then, §5 introduces
the different kind of proxies to support communications be-
tween the web browser and Pharo. §6 describes the final
stage of development where the complete app is transpiled
from Smalltalk to Javascript and run in the browser. Last, §7
draws conclusions and proposes future work arising out of
the proposal described here.

2. State of Art

There are development tools for Javascript; there are de-
bugging tools for Javascript; and there are testing tools for
Javascript; but there is no integrated environment that in-
cludes all three.

This is particularly a problem when using Test-Driven-
Development (TDD). When developing in a rich IDE, such
as Pharo, it is natural to create and run a test, and when the
test fails (either because of a missing method, an error, or
an incorrect result) one can edit directly from the debugger,
hot-swap code (including defining new methods), and then
continue the test execution.

There are many development environments for Javascript
such as CoffeeScript(Ashkenas), most of which are primar-
ily cleaned up languages or integrated editors that pro-
vide access to Javascript, HTML, and CSS! These usu-
ally add an additional step to the development process
wherein the source code is translated to Javascript. Only
WebStorm(JetBrains) appears to have a Javascript IDE even
close to an environment like Pharo.

Debugging tools such as Firebug(Mozilla) are built into
most browsers. They allow breakpointing, single-stepping,
and examining of code and data. But they don’t include
editors that feed changes back into the codebase.

Testing tools such as Selenium(HQ) provide test environ-
ments for Javascript, but they have a couple of problems.
Firstly, they are largely used for regression testing or for
after-the-fact validation, rather than as part of the develop-
ment process. Secondly, they are not actualy running the
browser Javascript implementation and are not interacting
with a browser DOM; therefore they do not capture the ex-
act semantics of the production environment.

Amber(Petton et al.) implements a Smalltalk IDE in the
browser. Compared to Pharo it is an impoverished environ-
ment IDE, with no hot-swap of code, limited debugger, and
no refactoring.

I'See blog post "What are the best javascript IDEs" http:/www.slant.co/
topics/1686/~what-are-the-best-javascript-ides.

Smalltalk/Javascript interop via proxies

DOPPIO(Vilk and Berger 2014) assumes that the execu-
tion model is sequential/batch execution where a program
alternates running and waiting for I/O. This is at odds with
web programming - and modern interactive applications -
where users can typically enter data in their preferred order
and then it is validated. The mechanisms they developed to
support their execution model also supports a debugging ca-
pability, although at appreciable performance penalty.

3. Overview of the Proposed Solution

In this section we give an overview of our development
process as well as the underlying platform. Our goal is to
allow developers to benefit from the rich Pharo development
environment, while targetting a web browser that executes
Javascript.

The process is inspired by eXtreme Programming where
tests serve as a guide to developers. It involves a progression
in 3 steps: from running entirely within Pharo to running
entirely within the browser. The test suite is transferred from
one step to the other. Tests are developed once and run under
different conditions. Only setup and resources are changed.

The 3 steps of our development process are the following:

1. Native Pharo Testing. This stage is perfect for testing
processing and algorithms. Developers write tests related
to the application’s logic only, such as a state-machine
and its transitions.

Running the tests and ensuring they pass leads to the
code that represents the core of the app. Since this is
done within the Pharo environment, it benefits from the
full power of the language and its IDE (e.g refactoring,
versionning, hot-code swapping during debug).

However, it is not always possible to fully disconnect the
app’s logic from other parts of the app provided by the
web browser. In such situations, developers can rely on
mock objects (Kim et al. 2006). We provide the simplest
possible mocks, that silently accept any messages. Devel-
opers can however still develop their own specific mocks
if needed.

2. App with a remote browser. At this stage, we introduce
features that require the web browser. That is typically
the Ul Both tests and application code still run on Pharo,
so we still benefit from the language and its IDE. Entities
such as DOM elements or third-party Javascript code run
on the browser.

Our infrastructure, PharolS, allows controlling the web
browser (e.g. open, close, reload), and establishing con-
nections between entities on the web browser and ones on
Pharo. This is achieved thanks to proxies. On the Pharo
side, we have proxies of entities on the browser (e.g. win-
dow, document). Symetrically, on the browser side, we
have proxies of Pharo code blocks and other objects so
the browser can trigger application features by means of
events and call-backs. This allows the code running in

2016/5/22

http://www.slant.co/topics/1686/~what-are-the-best-javascript-ides
http://www.slant.co/topics/1686/~what-are-the-best-javascript-ides

Pharo to interact with the DOM and field browser events,
all the while having full access to the Pharo debugging,
development, and refactoring tools.

3. Transpilaton to Javascript In this final step, tests ensure
the full app functions with multiple browsers. This allows
the export (in Javascript) of the Smalltalk code that has
been developed, and full execution of all of the code
within the browser. The key to this is that the Smalltalk
execution model is faithfully replicated in the transpiled
Javascript code.

4. Mocks for Native Pharo Testing

Our proposed development methodology starts with pure
code written in Pharo Smalltalk, focusing on the model
classes for the application. Although all the tests developed
in this phase are running completely within Pharo, they can
all also be run in the browser(s) in phase 3 to verify that
there have been no errors introduced when calling Javascript
libraries and DOM objects.

Using the principles of Test-Driven-Design(Beck 2002),
tests are created and run, code is written to allow the tests to
pass, and the sequence repeats until a point is reached where
the tests require interaction with the user via the browser. If
the test does not require an actual result from the browser,
then mock objects can be used. Some global names like
document, window, etc. are bound to mock objects to
allow code to reference browser objects - but they accept
any message and return no useful results.

At any point in the subsequent development, if a test
arises that doesn’t require browser interaction it can be added
to the set of tests to be run standalone in Pharo.

5. Proxies for Browser <> Pharo
Communication

Sooner or later, a test will require true interaction with the
browser. This may be because it needs to manipulate the
DOM, to provide some event handling, or to interact with
some third-party Javascript code.

Figure 1 shows a simple unit test. It demonstrates a very
natural interaction with the browser Javascript interfaces,
similar to that used in Amber(Petton et al.).

The programming model, shared with Amber represents
Javascript function calls, field accesses, and field assign-
ments as Smalltalk message sends. The translation is done
a couple of different ways in different places in our system
The code (from lines 3,4,7,11):

document createElement: ’button’
button id: "who’ ...
button addEventListener: #click

block: [:xevlflag:=true]
button style backgroundColor: ’pink’

Smalltalk/Javascript interop via proxies

is effectively transpiled” into

document. createElement ("button™)
button.id="who"
button.addEventListener ("click",
function (xev){ flag = true})
button.style .backgroundColor= ’"pink’

and it is fairly easy to see how this would work in the
browser.

In fact, this code would work perfectly well in Amber?
which runs within the browser. We could transpile this test to
Javascript and run it in the browser, and it would work. But if
it didn’t and we needed to debug it, we would have to switch
out of our development environment and start debugging
it as Javascript and using the breakpoints provided in the
browser’s debugger. While this might be reasonable for a
Javascript developer who wanted to write his/her code in
Smalltalk, for our target audience of Smalltalkers who want
to write for the web this would be an unfamiliar world.

Instead, we want to run and debug the code in Pharo
Smalltalk but use the browser as the User Interface. This
introduces three main problems.

1. How can the code in Pharo get access to the DOM and
other objects in the browser?

2. How can the browser get access to aBlockClosure in
Pharo for event callbacks?

3. How can the browser access other callbacks?

5.1 Pharo access to the browser: Forward proxies

This is the mechanism for the Pharo code to access the
objects in the browser. Some global names like document,
window, etc. are bound to proxies to provide an initial entré
into the browser.

5.2 Event callbacks to Pharo: Reverse proxies

This is the mechanism for the browser code to allow event
callbacks to call code blocks in Pharo. When the application
adds an event listener, the browser code is asked to create
a callback proxie. A mapping is set up on the Pharo side to
map that proxy to the corresponding BlockClosure. Then the
listener is set to the proxy.

The complication here is that the Pharo object must be
retained as long as there is a reference on the browser, but no
longer. There is no weak map on the browser, so the proxies
are garbage collected using a reference counting collector.
When the count goes to zero, the browser sends a callback
to remove the mapping on the Pharo side, which frees up
the BlockClosure to enable it to be garbage collected. The
reference count is maintained by adding or removing an
event handler, so the reverse proxy remains until the listener
is re-assigned.

2 This is correct in principle, but the details are quite different, as will be
explained in §6.

3 with the exception of slot_ and native_ which will be discussed later

2016/5/22

1 testBrowserButton

2 | button flag |

3 button := document createElement:

4 button id: ’who’ ;

5 slot_innerHTML.:

6 addEventListener: #click block: [: ev

"button’ .

"Click_on_this_within 10 _seconds_or _the test _fails’;

7 button addEventListener: #click block: [: xev | flag := true];
8 innerHTML: ’Click_again_immediately _or _the_test fails’;
9 style backgroundColor: ’yellow’

10] .
1 button style backgroundColor: ’'pink’ ;

12 height: " 2cm’ .

13 document body native_appendChild: button.

14 flag := nil.

15 self assert: (window confirm: ’If_you_can_see_the pink_button,’,

16 r ,accept _this_.and_then click_on_the_ button_twice’)
17 description: ’'no_aknowledgement on browser’ .

I8 self delayFor: 10 seconds orUntil: [flag].

19 self assert: flag notNil description: ’button_not_clicked’ .

2 self assert: (window confirm: ’Did_the_button_turn_yellow?’)

Figure 1. Simple interactive test

It is thus the programmer’s job to set listeners to nil
before removing a DOM object. The ramifications of failing
to do this are limited, since these reverse proxies are only
used while testing and debugging, so no long-term memory
leak is created.

5.3 Other browser callbacks to Pharo: Reverse proxies

This is also the mechanism for the browser code to access
other callbacks in Pharo. In fact, any time aBlockClosure
is passed to a function on the browser, a reverse proxy is cre-
ated. In this way, browser-side objects can call blocks that
reside on the Pharo side.

Unfortunately, because of the Javascript execution model,
these cannot return useful values, so this only works properly
for a stylized use of callbacks - callbacks that work by side-
effect or that call back their own parameters, rather than
return any useful value. In other words, these callbacks must
use continuation-passing-style (CPS)(Appel and Jim 1989).
Fortunately (if surprisingly) this is a very common style
of coding for Javascript code, mandated by the Javascript
execution model.

The bad news is that there is no way to garbage col-
lect these proxies, so they create a memory leak until the
bridge between the Pharo and browser is reset, at which
point the values will be collected on the Pharo side. Again,
this is not a long-term problem as reverse proxies are only
used for development/debugging/testing. The unary message
beOneShot can be sent to a BlockClosure so that the
reverse proxy will be removed after the first time it is in-

Smalltalk/Javascript interop via proxies

voked, which will commonly be the case in the CPS style of
coding.

5.4 Example of Browser <+ Pharo Communications

Figure 2 shows the interactions across a web socket between
the browser and Pharo— from the perspective of the browser
(so “Received” means a message from Pharo to the browser
and “Sent” means a message from the browser to Pharo).

The browser receives a string of Javascript, which it exe-
cutes. It then responds with the result. The responses are of
two forms - both objects with different keys:

* the key basic has a value which is a basic Javascript
value type: number, boolean, string;

* the key proxy has a value with is a string of the form
$_n, which represents an anonymous Javascript object,
or a string with the name of a named Javascript object
such as document, window, undefined, etc.

The log also shows another form, an object with the key cb
which is an asynchronous callback with a value of an array.
The first element of the array is the callback proxy, which
is used to access the corresponding BlockClosure in Pharo.
The next element is the event that triggered the callback. The
third element is the object which received the event (this
in the Javascript function), which is rarely needed.

The received messages are of 4 different forms:

1. Direct assignment of a field. This is seen in line 5 of
the log and also line 5 of figure 1. The s1ot_ prefix on
the name identifies it as a slot reference (for value or for

2016/5/22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Received: document._createElement_ (" button")

Sent: {"proxy":"$_1"}

Received: $_1._id_("who")

Sent: {"basic":"who"}

Received: $_1.innerHTML="Click on this within 10 seconds or the
Sent: {"basic":"Click on this within 10 seconds or the test fails"}

Received: JbLoggingEvaluatorWebSocketDelegate. _default (). _makeBlockClosureProxy_(false)

Sent: {"proxy":"$_2"}

test fails"

Received: JbLoggingEvaluatorWebSocketDelegate._set_callback_to_($_1,"click",$_2);

Sent: {"basic":true}
Received: $_1._style ()
Sent: {"proxy":"$_3"}

Received: $_3._backgroundColor_("pink")

n,.n

Sent: {"basic":"pink"}

Received: $_3._height_

Sent: {"basic":"2cm"}

("2cm")

Received: document._body ()

Sent: {"proxy":"$_4"}

Received: $_4.appendChild($_1)

Sent: {"proxy":"$_1"}

Received: window. _confirm_("If you can see the pink button,

Sent: {"basic":true}
Received: :—$_4
Received: :—$_3

Sent: {"cb":["$_2",{"proxy":"$_5"},{"proxy":"undefined"}]}
Received: $_1._innerHTML_(" Click again immediately or the test

Sent: {"basic":" Click

Received: JbLoggingEvaluatorWebSocketDelegate. _default (). _makeBlockClosureProxy_(false)

Sent: {"proxy":"$_6"}

again immediately or the test fails"}

accept

fails ")

this and then click on the

Received: JbLoggingEvaluatorWebSocketDelegate._set_callback_to_($_1,"click",$_6);

Sent: {"remove":true ,"
Received: :—$_2

Sent: {"basic":true}
Received: $_1._style ()
Sent: {"proxy":"$_7"}

pI’OX)’ n R " $_2 n}

Received: $_7._backgroundColor_("yellow")

"n,n

Sent: {"basic":"yellow"}
Sent: {"cb":["$_6",{"proxy":"$_8"},{"proxy":"undefined"}]}
Received: window. _confirm_("Did the button turn yellow?")

Sent: {"basic":true}

Smalltalk/Javascript interop via proxies

Figure 2. Log of messages between Pharo and the browser

2016/5/22

assignment). This is rarely needed except when setting a
field that doesn’t already exist, or setting a field that may
have a functional value.

2. Directly calling a function. This is seen in line 19 of
the log and line 15 of the code. The native_ prefix
on the name identifies it as a method call. This is very
rarely required except in some of the infrastructure code
when the DoesNotUnderstand code has not yet been put
in place.

3. Most lines call a Smalltalk method on an object. This is
seen in line 1 of the listing and line 3 of the code. From
this one can see the translation of a Smalltalk method
to a Javascript function name: an underscore is prefixed,
and every colon is replaced with an underscore. If the
object is a Smalltalk object, it will presumably have a
field of that name bound to a function and that func-
tion will be executed with the object bound to this
(in Javascript, self in Smalltalk). If the object is not
a Smalltalk object (as in this case), then the search for
the name — _createElement_ in this case - will fall
through to Object, and which has a binding for every
such name! This fall-through code looks at the first part
of the name (between the first 2 underscores) and tries
to handle this as the name of a Javascript field acces-
sor/setter or as a Javascript function. If there isa s1lot_
or a native_ prefix, then it is forced to be a field ac-
cessor/setter or function call, respectively. If not, then
it checks if there is a field with that name in the ob-
ject and whether that field is a function. If it is a func-
tion then this message send is interpreted as a method
call and the Javascript function is invoked on the ob-
ject with the original parameter list. The appropriate ac-
cessor/setter/function is created/aliased to the original
name with the undescores so that a subsequent call will
complete without all this work next time. Therefore a
second call to document._createElement_ will
dispatch directly to the builtin function. If nothing was
found, then the original call is bound up into a Mes-
sage object and the original target object is called at the
doesNotUnderstand method. If that falls through
to the default code in Object, then an exception is raised.

4. Lastly, in listing lines 23, 24, and 32 are proxy delete
requests indicating that the Pharo side no longer has
references to the proxy object and it should be removed
from the browser side.

Lines 7-10 and 28-31 in the log are just normal Smalltalk
message sends, but line 7 asks the browser to create a
reverse-proxy, which it does, returning proxy 2, and then
line 9 sets the “click” callback on the button.

These are not the ES6(Van Cutsem and Miller 2010)
proxies, although we may use them in the future for imple-
mentation.

Smalltalk/Javascript interop via proxies

6. Transpilation to Javascript

The final stage of development is to transpile the com-
plete program from Smalltalk to Javascript and run it in the
browser.

The complete stand-alone test suite from §4 should work.
The complete browser test suite from §5 should also work,
although obviously at higher speed as there is no longer any
websocket between the program and the DOM.

The transpilation uses the standard Smalltalk parser to
convert Smalltalk classes and methods to an Abstract Syntax
Tree, which is then walked to generate the desired Javascript
code. The vast majority of Smalltalk code is message sends.
In §5.4 we described the translation from Smalltalk message
names to Javascript function names. Every message that is
sent is recorded so that the browser code can set up the req-
uisite trampolines to handle doesNotUnderstand for
every possible message. Messages can also be dynamically
created and dispatched using perform:withArguments:,
so before dispatching the message, that method must make
sure that there is a trampoline to catch the possible missing
method for the message.

The goal of the transpilation is to have the best possi-
ble fidelity to the original Smalltalk semantics, while inter-
operating smoothly with Javascript libraries and the DOM.
Choosing optimal Javascript code sequences to implement
Smalltalk semantics can be challenging, so we follow the re-
sults of (Mason 2015).

To get good performance the Pharo code generator short-
cuts many messages and generates more optimal VM code

for conditional and looping messages like: 1 fTrue:ifFalse:,

whileTrue:, and to:by:do:. Taking our lead from the
Pharo code generator, we also short-cut many of those oper-
ations. In Smalltalk, primitive messages such as comparison
and arithmetic operations are handled as normal function
calls, but the VM has extremely efficient handling for them.
In our transpiled code these must be generated as function
calls for semantic fidelity reasons unless we know either
staticaly or dynamically that they are safe, in which case we
optimize them to the standard Javascript operators.

The code that is generated is very readable in most cases.
The thing that detracts the most from that readability is
the necessity to handle null and undefined values. In
Smalltalk nil is an object, like any other and it can be
sent messages. In Javascript, null and undefined are the
only things that cannot be sent messages, so every message
send has to include a test to convert those values into nil as
necessary so that messages can be sent directly.

7. Conclusion

In this paper, we looked at the problem of program devel-
opment, testing and debugging for Javascript web develop-
ment, including the limitations of Javascript development
support on browsers.

2016/5/22

We proposed addressing this primarily by developing and
testing the code in a more mature IDE while accessing exact
DOM semantics on the browser via the use of proxies. The
resulting code can then be deployed within the browser be-
cause of the high-fidelity translation from our development
language (Smalltalk) to production-quality Javascrpt. This
provides a rich development environment allowing access to
debugging, refactoring, and code analysis tools in the IDE.
The only major drawback is the performance of the proxy
communication, making certain kinds of interaction (such
as tracking mouse movement) difficult to test. There are also
a few corner-cases where somewhat stylized coding is cur-
rently required.

Looking forward, we would like to improve the perfor-
mance of the proxy communication and reduce the special
corner-cases. We are also working to better integrate with
Javascript libraries and package managers. As browsers ac-
quire weak arrays, we will be able to improve the handling of
reverse-proxies. As browsers expose APIs for debugging, we
would like to integrate those so that support for debugging
in the native IDE could extend even further into the develop-
ment workflow. If we had better information about the types
of values we could optimize Javascript operators rather than
using method calls, so we are considering use of the Roell
typer(Pluquet et al. 2009) to do dynamic type inference.

References

A. W. Appel and T. Jim. Continuation-passing, closure-passing
style. In Proceedings of the 16th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 89,
pages 293-302, New York, NY, USA, 1989. ACM. ISBN 0-
89791-294-2. doi: 10.1145/75277.75303. URL http://doi.acm.
org/10.1145/75277.75303.

J. Ashkenas. CoffeeScript is a little language that compiles into
JavaScript. URL http://coffeescript.org.

K. Beck. Test Driven Development: By Example. Addison-Wesley
Professional, 2002.

Community. Node-Webkit for desktop applications. URL http:
/Inwjs.io.

GitHub. Electron: Build cross platform desktop apps with web
technologies. URL http:/electron.atom.io.

S. HQ. Selenium: Browser Automation.
seleniumhg.org.

URL http://www.

JetBrains. WebStorm Javascript IDE. URL https:/www.jetbrains.
com/webstorm/.

T. Kim, C. Park, and C. Wu. Mock object models for test driven
development. In Fourth International Conference on Software
Engineering, Research, Management and Applications (SERA
2006), 9-11 August 2006, Seattle, Washington, USA, pages 221—
228. IEEE Computer Society, 2006. ISBN 0-7695-2656-X. URL
http://dblp.uni-trier.de/db/conf/sera/sera2006.html#KimPWO06.

Smalltalk/Javascript interop via proxies

D. Mason. Performance from aligning smalltalk & javascript
classes. In Proceedings of the International Workshop on
Smalltalk Technologies, IWST °15, pages 4:1-4:8, New York,
NY, USA, 2015. ACM. ISBN 978-1-4503-3857-8. doi: 10.1145/
2811237.2811301. URL http://doi.acm.org/10.1145/2811237.
2811301.

M. Milani and B. Benvie. appjs: Build desktop applications. URL
http://appjs.com.

Morzilla. Firebug: Web Development Evolved.
getfirebug.com.

N. Petton, H. Voj¢ik, et al. Amber smalltalk. URL http://amber-lang.
net.

URL http/

F. Pluquet, A. Marot, and R. Wuyts. Fast type reconstruction for
dynamically typed programming languages. In Proceedings of
the 5th Symposium on Dynamic Languages, DLS *09, pages 69—
78, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-769-
1. doi: 10.1145/1640134.1640145. URL http://doi.acm.org/10.
1145/1640134.1640145.

T. Van Cutsem and M. S. Miller. Proxies: Design principles for
robust object-oriented intercession APIs. In Proceedings of the
6th symposium on Dynamic languages, number 12 in DLS ’10,
pages 59-72, New York, NY, USA, October 2010. ACM. doi:
10.1145/1899661.1869638.

J. Vilk and E. D. Berger. DOPPIO: Breaking the browser language
barrier. In M. F. P. O’Boyle and K. Pingali, editors, ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014, page 52. ACM, 2014. ISBN 978-1-4503-2784-8.
URL http://dblp.uni-trier.de/db/conf/pldi/pldi2014.html#VilkB14.

2016/5/22

http://doi.acm.org/10.1145/75277.75303
http://doi.acm.org/10.1145/75277.75303
http://coffeescript.org
http://nwjs.io
http://nwjs.io
http://electron.atom.io
http://www.seleniumhq.org
http://www.seleniumhq.org
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
http://dblp.uni-trier.de/db/conf/sera/sera2006.html#KimPW06
http://doi.acm.org/10.1145/2811237.2811301
http://doi.acm.org/10.1145/2811237.2811301
http://appjs.com
http://getfirebug.com
http://getfirebug.com
http://amber-lang.net
http://amber-lang.net
http://doi.acm.org/10.1145/1640134.1640145
http://doi.acm.org/10.1145/1640134.1640145
http://dblp.uni-trier.de/db/conf/pldi/pldi2014.html#VilkB14

	Introduction
	State of Art
	Overview of the Proposed Solution
	Mocks for Native Pharo Testing
	Proxies for Browser Pharo Communication
	Pharo access to the browser: Forward proxies
	Event callbacks to Pharo: Reverse proxies
	Other browser callbacks to Pharo: Reverse proxies
	Example of Browser Pharo Communications

	Transpilation to Javascript
	Conclusion

