There's no magic...

... until you talk about databases

Norbert Hartl ESUG 2022

"An important thing you need to know about a rule is

when you should break it"
(Norbert Hartl, ESUG 2022)

Recap: ESUG 2018

Micro services

PharQ cars

(b

tech stack

@ WRabbit G} r&

'.{' A

e, 03 -

R - Grafana
HAPROXY elasticsearch

It
has
grown

It

has
grown
small

Three things that can kill a project

Three things that can kill a project

1. complexity

Three things that can kill a project

1. complexity

2. complexity

Three things that can kill a project

1. complexity
2. complexity

3. Javascript

tech stack

@ WRabbit G} r&

'.{' A

e, 03 -

R - Grafana
HAPROXY elasticsearch

tech stack - elasticsearch 0
mongo

@ Rabbit
ANSIBLE G.: ﬁ

e =S

Gt hs - Grafana
HAPROXY elasticsearch

Events and aggregation

Everyone likes dashboards

Events and aggregation

Everyone likes dashboards

e avoid

Events and aggregation

Everyone likes dashboards

e avoid

* postpone

tech stack - micro services

.mongo

W B RabbitVO r&

Grafana

g
KA hy

HAPROXY

tech stack - orchestration 0
mongo

-" docker -@ g
© s

Grafana

P
Pele. W Y
B iy

HAPROXY

Docker swarm & Kubernetes

There is only one advize

Docker swarm & Kubernetes

There is only one advize

e Don't

tech stack - monitoring

ANSIBLE

i

el B
e i

HAPROXY

.mongo

Grafan

»If you have a service that is not monitored you don’t have a

tech stack - containers
.mongo

ANSIBLE '%\

Grafana

B

Pele. W Y
B iy

HAPROXY

tech stack - orchestration 0
mongo

Grafana
HAPROXY

Ansible cheat she« rame: Deploy apptivegrid API
[api-group] community.docker.docker_container:
inventory name: "apptive-api-{{ item.0+1apptivegrid-api role

apptive1 image: apptivegrid-api:
apptive2 {{ apptivegrid_api_version }}
apptive3 porl'ltSE t L_ip}}:{{ item.1 }}:3600"
hostname: apptivel || 7, \uinternal Ip}}:{{ ftem.1 }}

internal_ip: 10.1 _2_5“°St—"a’$ backend apptivegrid-api-backend
balance leastconn

apptive_api_ports: haproxy rolb
- 3600 {% for apihost in groups[,api-group'] %} |
AAAa {% for port in
- hosts: api-group play hostvars[apihost].apptive_api_ports %}
roles: server api-...-{{port}} {{internal_ip }}:
- apptivegrid-api {{ port }} check

{% endfor %}
{% endfor %}

tech stack - load balancer 0
mongo

Grafana

HAPROXY

tech stack

AN €

i
2 :'l g
'--'.T-":“."Q

HAPROXY

.mongo

Grafana

tech stack - database

HAPROXY

‘mongo

Grafana

tech stack - database

‘mongo 0

%*dock% Q

"-".?‘.?0 Grafana

HAPROXY

tech stack

AN €

i
2 :'l g
'--'.T-":“."Q

HAPROXY

.mongo

Grafana

Mongo DB

The good parts

» simple document storage

e provides database cluster
e supposed to be web scale

« we have voyage for it

Mongo DB

The not-so-good parts

* JSON supports 6 data types

BSON supports a few more

transactions are not part of mongo talk

single writer vs. sharding

query DSLs are a drag

Soil

What it needs to be an OO database?

ACID transaction (with MVCC)

Regional file locking (row-level locking)

serialization/materialization

A b-tree implementation for indexing

100% smalltalk

How do we scale that?

Escaping the single machine

Files are local on a machine]

Opening databases per request is expensive ‘

-
File locking enables multi-image usage

How to scale to more than one machine?

Distribute the database

Escape step #1

* Reduce conflict potential
e Partition the model

* Each user has its own database on disk (4kb)

D b bbb
D b b D

Distribute the database

Escape step #2

» Use a distributed filesystem (GlusterFS)

* Enables multi machine setup

» File locking across the network is not reliable
b b oo BRENENS BNENENE
b b oo BRENENE BNENENE

i replicatio i replicatio i

Distribute the database

Escape step #3

 stateless service
* URI contains patrtition criteria (/api/users/74827492/...)
 stick on path,word(3,/) if { path_beg /api/users/ }

e each request to the same database goes to the same
image

I'm a cloud shape

Request /api/users/456/.

hapro [|e 123
xy == o

Request /api/users/123/...

replication replication

Escape summary

The complete plan
» Persistence approaches are application specific
» Architecture can provide performance/scalability
» Writing local files does not need to be a blocker

* Pinning writes to one place solves a lot

