
1
The Squeak Object

Model

The object model of Smalltalk is simple and uniform, everything is an object. However, this uni-
formity can still be a source of problem for programmers used to other languages. In this chapter,
I present the core concepts and in particular how class are handled as objects. However, I suggest
interested readers to refer to books available onhttp://www.iam.unibe.ch/ ∼ducasse/. Again the
audience for this chapter is a programmer of another object-oriented languages such as C++ or Java.

1 The Rules of the Model

The design of the Smalltalk object model is based on a set of simple rules that are applieduniformly.
The rules are the following ones:

Rule 1. Everything is an object that has someprivatedata.

Rule 2. Every object is instance of a class.

Rule 3. A class defines the behavior viapublicmethods and the structure of its instances via instance
variables which areprivateto the instances.

Rule 4. Each class is inheriting its behavior and structure description from a single superclass.

Rule 5. Objectsonly communicate via message passing (i.e., method invocation). When an object
receives a message, the corresponding method is looked up in theclass of the receiver, then
if not found on this class continues in the class’s superclasses.

Rule 6. The classObject is the root of the inheritance tree (in Squeak this isProtoObject the class
that represents objects understanding the smallest set of messages).

Rule 7. Classes are instances too. They are instances of other classes calledmetaclasses.

1.1 Model Precisions

In Smalltalk we have only objects that are instance of classes. Class defines the structure of the
instance in terms of instance variables, and methods.

S. Ducasse

2 The Squeak Object Model

Object

Morph
fullPrintOn:
colorString:

BorderedMorph
fullPrintOn:

EllipseMorph

fullPrintOn: aStream

 aStream
 nextPutAll: self class name ;
 nextPutAll: 'color: ' , (self colorString: color)

fullPrintOn: aStream

 aStream
 nextPutAll: '('.
 super fullPrintOn: aStream.
 nextPutAll: ') border' ;
 nextPutAll: borderWith asString.

anEllipseMorph 1

2

3

fullPrintOn: aStream
instance of

method lookup

Figure 1.1: Objectonly communicate via message passing (i.e.,method invocation). When an object
receives a message (1), the corresponding method is looked up in theclass of the receiver (2), then
if not found on this class continues in the class’s superclasses (3). .

Instance Variables. Instance variables areprivate to the instanceitself, contrary to Java or C++.
Even instances of the same class cannot access the instance variables of an object if this one did
not define accessors methods. Instance variables are accessible by all the methods of the class and
subclasses. Therefore there areprotectedin the C++ jargon. However, we prefer to say that they are
private because this is bad style to access directly instance variable from a subclass.

Methods. All the methods are public. A methodalwaysreturns a value using theˆ construct. When
not specified explicitly using thê construct, the return value of the method is the receiver of the
messagei.e., self. self (equivalent tothis in Java) represents the receiver of the message. The lookup
of messages sent toself starts in the class of the receiver (as shown in the Figure 1.1).

When we define a method in a subclass it can hide method in superclasses. To access such hidden
methods of a superclass messages should be sent tosuper and notself. super represents also
the receiver of the message but the lookup of messages start in the superclass of the class of the
method which issued the super invocation. In Figure 1.2, the methodfullPrintOn: is looked up
in the class of the receiverEllipseMorph which does not define it, therefore the lookup continues
inBorderedMorph the superclass ofEllipseMorph. This class defines the method which then gets
executed. The expressionsuper fullPrintOn: aStream is then executed. The lookup then starts in

1. The Rules of the Model 3

Object

Morph
fullPrintOn:
colorString:

BorderedMorph
fullPrintOn:

EllipseMorph

fullPrintOn: aStream

 aStream
 nextPutAll: self class name ;
 nextPutAll: 'color: ' , (self colorString: color)

fullPrintOn: aStream

 aStream
 nextPutAll: '('.
 super fullPrintOn: aStream.
 nextPutAll: ') border' ;
 nextPutAll: borderWith asString.

anEllipseMorph 1

2

3

fullPrintOn: aStream

A
B

C

D

instance of

method lookup

Figure 1.2:super changes the method lookup to start in the superclass of the class that issues the
super call (A).self always refers to the receiver, therefore the lookup of the methodcolorString:
invoked in the classMorph in the expressionself colorString: aStream (B) starts in the class of the
receiver:EllipseMorph (C).

the superclass ofBorderedMorph – note that the receiver class is not involved to determine where to
start the lookup. This method is defined in the superclass so it is executed.

self is said to be dynamic in the sense that it always represents the receiver of the message. This
means thatall the messages sent toself are looking up by starting in the receiver’s class. For example
in Figure 1.2 the messagefullPrintOn: is sent to anEllipseMorph therefore the lookup of the method
colorString: invoked in the classMorph in the expressionself colorString: aStream (B) starts in
the class of the receiver:EllipseMorph (C).

Note that the model we presented is conceptual in the sense that the virtual machine implementors
use all kind of tricks and optimizations to speed up the method lookup. The main point here is to
understand what is the semantics ofself andsuper.

Abstractness. To finish with the precisions, a class can be abstract. However, there is no dedicaced
construct for that. A class is considered abstract if one of its method contains the expressionself
subclassResponsibility stating that subclasses have the responsibility to define the method. When
such a method is executed an exception is raised.

S. Ducasse

4 The Squeak Object Model

Object

Morph
fullPrintOn:
colorString:

BorderedMorph
fullPrintOn:

EllipseMorph

anEllipseMorph

EllipseMorph
class

BorderedMorph
class

Morph
class

Object
class

instance of

Figure 1.3: Each class is the unique instance of another anonymous class, called a metaclass,i.e., a
class whose instances are classes. Metaclasses follow the inheritance of their classes.EllipseMorph
is the unique instance of the classEllipseMorph class.

Method 1.1

aMethodDeclaredAbstract
"This is the responsibility of my subclasses to define this method"

self subclassResponsibility

Note that nothing prevents you to create instance of the class having abstract methods. This will
work until an abstract method will be invoked.

2 Uniformity Implications: The class side

In the first part of this chapter I stated that the model of Smalltalk is defined by a set of simple rules
uniformly applied. Now I look at the implications of this uniformity and in particular how these rules
apply to the class themselves. Indeed, since everything is an object instance of a class (rule one and
two) then class should also be objects instances of other classes. You guess right: this is exactly the
way it is!

Rule 7. In Smalltalk classes are instances of other classes, called metaclasses,i.e., simply classes
whose instances are other classes.

Metaclasses are plain normal classes therefore they define the structure (name, superclass, sub-
classes, method dictionary...) and the behavior (methodsnew, allSubclasses...) of classes. As an

2. Uniformity Implications: The class side 5

Object

Morph
fullPrintOn:
colorString:

Morph
class

Object
class

instance of

Class

ClassDescription

ProtoObject

ProtoObject
class

Behavior

new

Figure 1.4: The inheritance chain ofMorph andMorph class classes.

ellipseMorph is described by the classEllipseMorph defining an instance variablecolor and methods
to draw the ellipse. The classEllipseMorph is described by a class that specifies its structure and
methods.

Parallel Inheritance Tree. In fact for composition reasons, a class is the sole instance of an anony-
mous metaclass whose name is theX class whereX is the name of the class. For exampleEl-
lipseMorph is the sole instance of the classEllipseMorph class. Now inheritance of structure and
behavior follow the same rules for classes than for basic objects. Therefore, metaclass instance vari-
able description and method definition is reused via inheritance. All the class management is defined
in the class,Behavior which is the essence of a class,ClassDescription which adds instance variable
names, method categories,Class andMetaclass which deals with the fact that it has only one in-
stance. The Figure 1.3 presents then the situation: each class is instance of its metaclass and metaclass
inheritance follows the one of classes.

The classBehavior which inherits fromObject defines the methodnew andnew: that create
instances and all the other methods crucial for instance and class management as shown in the Fig-
ure 1.4. Therefore when the messagenew is send to theEllipseMorph class, it is looked up in the
classEllipseMorph class class and in its superclasses. Ultimately the methodnew defined in class
Behavior will be executed to create an instance of the classEllipseMorph.

Rule 8. A classX is the sole instance of an anonymous class namedX class. The metaclassX class
inherits from the metaclass of the superclass of the classX.

S. Ducasse

6 The Squeak Object Model

Object

Morph
fullPrintOn:
colorString:

BorderedMorph
fullPrintOn:

EllipseMorph

anEllipseMorph

EllipseMorph
class

BorderedMorph
class

Object
class

instance of

1

fullPrintOn: aStream

2

3

Morph class
new

A

new

B

C

method lookup

Figure 1.5: There is only one lookup mechanism to resolve all the messages sent. The fact that there
is classes and basic objects does not matter. The lookup starts in the class of the receiver and follows
the inheritance tree.

3 Class Instance Variables and Class Methods

In fact in Smalltalk there is only one execution model, just applied at two levels: at the instances and
classes levels. Class instance variables are just instance variables of the metaclass and class methods
are just methods defined on metaclasses.

Class instance variables. We used the termclass instance variablesto refer to instance variables
defined by a metaclass that describe classes. For example, the instance variablesuperclass that
describes the superclass of a class is a class instance variable (defined on the classBehavior). Note
that class instance variables has exactly the same properties that instance variables: they are private to
the instance.

All methods of the classPoint can access the instance variablex. Similarly all methods of class
can access the instance variablesuperclass. Instance methods cannot access class instance variable
and vice-versa the class methods cannot access the instance variables.

In a first understanding, Java and C++ programmers can consider that class methods and attributes
are equivalent to static members. But the uniformity of Smalltalk goes step further by havingexactly
the samesemantics for instance and class in terms of methods resolution and visibility. There is then
noconstraints for class methods. They can invoke overriden methods normally as any other methods.

Class Methods. Inheritance and method lookup are exactly handled the same way at the class level
that at the instance level. There is no special rules. As stated by the rule 5, when a message is sent to

3. Class Instance Variables and Class Methods 7

EllipseMorph

EllipseMorph
class

instance of

Figure 1.6: Switching between a class and its metaclass.

an object, the method is looked up in the class of the receiver. The fact that the object is a basic object
or a class does not matter. The rule applies in all cases as shown in the Figure 1.5. We use the term
class methodsto talk about methods defined on the class side but there is no difference. In fact, there
is only one implementation of methods and lookup.

About the Browser. A class and its metaclass are two separate classes. One is instance of the other.
However the browser helps us to browse them as shown in Figure 1.6 as if they would be one single
class with one static part.

Clicking on the button on the instance button browse the classEllipseMorph: the methods shown
are then the ones that will be sent to instances the classEllipseMorph. Pressing the class button
browses the classEllipseMorph class: the methods shown are then the ones that will be sent to the
classEllipseMorph itself.

An Example: A Singleton. To give you a concrete example, imagine that we want to implement
the Singleton pattern,i.e., to ensure that a class only creates one and only one instance. Imagine that
we want to have a class namedWebServer that should only have one instance. To implement such a
pattern the idea is to keep a reference to the first created instance and to give it back on demand. The

S. Ducasse

8 The Squeak Object Model

implementation is based on the definition of a class instance variable
We create the classWebServer as shown by the class definition class 1.1. Then on the class side

we define the instance variableuniqueInstance. This instance variable is then private to the object
that represents the classNode.

Class 1.1

Object subclass: #WebServer
instanceVariableNames: ’sessions ’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Web’

Class 1.2

WebServer class
instanceVariableNames: ’uniqueInstance ’

To forbid instance creation, we redefine the methodWebServer class»new to raise an error
(see method 1.2).

Method 1.2

In category instance creation
WebServer class>>new

self error: ’You should use uniqueInstance to get the unique instance’

Then the define the methodWebServer class»uniqueInstance that only creates an instance and
assign it to the variable uniqueInstance if no instance has been previously created (see method 1.3).

Method 1.3

In category singleton
WebServer class>>uniqueInstance

uniqueInstance isNil
ifTrue: [uniqueInstance := self basicNew initialize].

^ uniqueInstance

Optionally we implement the methodreset to reinitialize the singleton (see method 1.4).

Method 1.4

In category singleton
WebServer class>>reset

uniqueInstance := nil

4. Other Shared Variables 9

Date
julianDayNumber
DaysInMonth
FirstDayOfMonth
MonthNames
julianDayNumber
monthName

Date class

initialize

shared
DaysInMonth
FirstDayOfMonth
MonthNames

....julianDayNumber...

....MonthNames...

....DaysInMonth...

...MonthNames...

private instance variables
superclass
subclass
methodDict
...private instance variables

julianDayNumber

Figure 1.7: Instance and class methods accessing different variables.

4 Other Shared Variables

The Smalltalk object model also proposes some ways to share variables globally or between classes
and between instances and classes. These variables are calledglobal variables, class variables, and
pool variables.

Global Variables. In Squeak, all the global variables are stored into the unique namespace called
Smalltalk, an instance ofSystemDictionary. We do not want to tell more on global variables because
you should not use global variables.

Class variables: Shared Variables. Sometimes we need to have data that is shared among all the
instances of a class and the class itself. This is possible by usingclass variables, shared variables
in Smalltalk jargon. The termclass variablesindicates also that the lifetime of the variables is the
same of the class. But what the term does not convey is that these variables are shared among all the
instances of a class and the classes as shown by the Figure 1.7.

A class variableis a variable that has the lifetime of a class and that can be accessed by all the
class (and subclasses) methods and by all the instance methods. We illustrate this kind of variable
by taking a look at the classDate that represents dates. A class variable is declared using the class
definitionsubclass:instanceVariableNames:classVariableNames:poolDictionaries:category:

A Case Study: the classDate. A date is an object representing the date.Date today returns the
object that represents the current day. If we ask this object to print itself we obtain ’27 November
2002’. The Figure 1.8 shows a date object in an inspector obtained using the expressionDate today
inspect. What we see is that a date object only records a number of days. There is no instance
variables representing the month names, the day names, the number of days per month, and so on. In
fact such information is shared by all the instances of the class and is then represented by the class
variablesDaysInMonth FirstDayOfMonth MonthNames SecondsInDay WeekDayNames of the
Date class definition as shown in the class 1.3.

S. Ducasse

10 The Squeak Object Model

Figure 1.8: A date is an object that only represents number of days, all the information about month
names, day names, ...is shared among all the instances

Date
julianDayNumber
DaysInMonth
FirstDayOfMonth
MonthNames
julianDayNumber
monthName

Date class

initialize

julianDayNumber
 "Answer the number of days (or part of
 a day) elapsed since noon GMT on
 January 1st, 4713 B.C."

 ^ julianDayNumber

monthName
 "Answer the name of the month in
 which the receiver falls"

 ^ MonthNames at: self monthIndex

initialize
 "Initialize class variables representing the named of the months
and days and the number of seconds, days in each month and first
day of each month."

 MonthNames := #(January February March April May June July
August September October November December).
 SecondsInDay := 24 * 60 * 60.
 DaysInMonth := #(31 28 31 30 31 30 31 31 30 31 30 31).
FirstDayOfMonth := #(1 32 60 91 121 152 182 213 244 274 274 305
335).
WeekDayNames := #(Monday Tuesday Wednesday Thursday
Friday Saturday Sunday).

Figure 1.9: Instance and class methods accessing different variables.

4. Other Shared Variables 11

Class 1.3

Magnitude subclass: #Date
instanceVariableNames: ’julianDayNumber ’
classVariableNames: ’DaysInMonth FirstDayOfMonth MonthNames

SecondsInDay WeekDayNames ’
poolDictionaries: ’’
category: ’Kernel-Magnitudes’

All instance methods of the classDate (and subclasses) can direclty access the class variables
defined by the classDate as shown by the methodmth:monthName where the methodmonthName
accesses the class variableMonthNames.

Method 1.5

Date>>monthName
"Answer the name of the month in which the receiver falls."

^MonthNames at: self monthIndex

In a similar fashion, all class methods can access class variables. The class method 1.6nameOf-
Day: accesses the class variableWeekDayNames.

Method 1.6

Date class>>nameOfDay: dayIndex
"Answer a symbol representing the name of the day indexed by dayIndex, 1-7."

^WeekDayNames at: dayIndex

Pool dictionary are really static concepts and they should be defined before a method can used
them. We strongly encourage you not to use them.

Class Initialization. Now the natural question that arises is how to initialize class variables. As class
variables have class lifetime, they are usually initialized by metaclasses. In Smalltalk, class methods
namedinitialize play a special role, they are used to initialize classes. When a metaclass defines
a methodinitialize, this method is automatically called by the system when the class is loaded in
memory. The methodDate class»initialize method 1.7 shows how the class variables are initialized.

S. Ducasse

12 The Squeak Object Model

Method 1.7

Date class>>initialize
"Initialize class variables representing the names of the months and
days and the number of seconds, days in each month, and first day
of each month."

MonthNames :=
#(January February March April May June July August September
October November December).

SecondsInDay := 24 * 60 * 60.
DaysInMonth := #(31 28 31 30 31 30 31 31 30 31 30 31).
FirstDayOfMonth := #(1 32 60 91 121 152 182 213 244 274 305 335).
WeekDayNames := #(Monday Tuesday Wednesday Thursday Friday Saturday Sunday).

PoolDictionaries. The final kind of shared variables is calledpool variables. Normally you do
not need them. We present them just so that you can understand some squeak code using them.
PoolVariables are grouped into PoolDictionaries. A pool dictionary defines a group of variables that
are sahred among classes (but not their suclasses).

Script 1.1 (Declaring a pool dictionary)

Smalltalk at: #MyPoolDict put: (Dictionary new at: #myPoolVar put: 3 ; yourself)

The class using a pool declares it using thesubclass:instanceVariableNames:classVariable-
Names:poolDictionaries:category: method as shown in the class definition class 1.4.

Class 1.4

Object subclass: #MyClass
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’MyPoolDict’
category: ’MyTest’

Then methods of the classMyClass can directly access the variables defined in the dictionary

Method 1.8

MyClass>>aMethod

Transcript show: myPoolVar printString ;cr.
"equivalent to"
Transcript show: (MyPoolDict at: #myPoolVar) printString; cr

5. What you should have learned 13

5 What you should have learned

In Squeak everything is an object instance of a class. Classes define the structure viaprivate instance
variables and the behavior viapublicmethods of the class instances. Each class is the unique instance
of its metaclass. Class variables are private variables shared by the class and all the instances of the
class.initialize class methods are called automatically when a class is loaded in memory.

Further Readings. There exist excellent free online books that go much more in details. They
are all available at:http://www.iam.unibe.ch/ ∼ducasse/FreeBooks.html. I suggest you to read:
Smalltalk by Example as start.

S. Ducasse

